RANK OF LINEAR AND QUADRATIC COMBINATIONS OF MATRICES

被引:0
|
作者
Johnson, Ch R. [1 ]
Pena, J. M. [2 ]
Szulc, T. [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-61614 Poznan, Poland
来源
关键词
Rank; Full rank factorization; Linear combinations of matrices; Convex combinations; Quadratic combinations; P-matrices;
D O I
10.13001/ela.2020.4949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the rank of some combinations of matrices is analysed. In particular, the rank of all matrices on the line joining two rank 1 matrices is characterized, and the rank of convex combinations of two matrices and quadratic combinations of three matrices is studied. Presented results concern the problem of robustness of rank under certain kinds of perturbations of a matrix.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [1] Invariance of Rank and Nullity for Linear Combinations of Sum and Product of Generalized Quadratic Matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 157 - 166
  • [2] Invariance of rank and nullity for linear combinations of sum and product of generalized quadratic matrices
    Liu, Shuyuan
    Chen, Meixiang
    Feng, Xiaoxia
    Yang, Zhongpeng
    Xie, Yanping
    International Journal of Applied Mathematics and Statistics, 2013, 42 (12): : 157 - 166
  • [3] On the quadraticity of linear combinations of quadratic matrices
    Uc, M.
    Ozdemir, H.
    Ozban, A. Y.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (06): : 1125 - 1137
  • [4] The nullity and rank of linear combinations of idempotent matrices
    Koliha, J. J.
    Rakocevic, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) : 11 - 14
  • [5] Rapid adaptation with linear combinations of rank-one matrices
    Goel, V
    Visweswariah, K
    Gopinath, R
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 581 - 584
  • [6] The generalized quadraticity of linear combinations of two commuting quadratic matrices
    Uc, Mahmut
    Petik, Tugba
    Ozdemir, Halim
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1696 - 1715
  • [7] The Nullity, Rank, and Invertibility of Linear Combinations of k-Potent Matrices
    Tosic, Marina
    Ljajko, Eugen
    Kontrec, Natasa
    Stojanovic, Vladica
    MATHEMATICS, 2020, 8 (12) : 1 - 13
  • [8] Quadratic transformations on matrices: Rank preservers
    Watkins, W
    JOURNAL OF ALGEBRA, 1996, 179 (02) : 549 - 569
  • [9] Convex combinations of matrices - full rank characterization
    Kolodziejczak, B
    Szulc, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) : 215 - 222
  • [10] ORTHOGONAL MATRICES AS LINEAR COMBINATIONS OF PERMUTATION MATRICES
    KAPOOR, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 12 (03) : 189 - 196