Automatic Segmentation of Left Atrial Geometry from Contrast-Enhanced Magnetic Resonance Images Using a Probabilistic Atlas

被引:0
|
作者
Karim, R. [1 ,3 ]
Juli, C. [2 ]
Malcolme-Lawes, L. [3 ]
Wyn-Davies, D. [3 ]
Kanagaratnam, P. [3 ]
Peters, N. [3 ]
Rueckert, D. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, 180 Queens Gate, London SW7 2AZ, England
[2] St Marys Hosp, Imaging Dept, London W2 1NY, England
[3] Imperial Coll London, Natl Heart & Lung Inst, London SW7 2AZ, England
关键词
Segmentation; Left atrium; Graph Cuts; Magnetic Resonance Angiography;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Left atrium segmentation and the extraction of its geometry remains a challenging problem despite of existing approaches. It is a clinically-relevant important problem with an increasing interest as more research into the mechanism of atrial fibrillation and its recurrence process is undertaken. Contrast-Enhanced (CE) Magnetic Resonance Angiography (MRA) produces excellent images for extracting the atrial geometry. Nevertheless, the variable anatomy of the atrium poses significant challenge for segmentation. To overcome the inherent difficulties with this segmentation, we propose a technique that utilizes the Voronoi subdivision framework for the segmentation. In addition, the segmentation is based on the minimization of a Markov Random Field based energy functional defined within the Voronoi framework. The method also incorporates anatomical priors in the form of a probabilistic atlas. We show how the model is efficient in segmenting atrium images by comparing results from manual segmentations.
引用
收藏
页码:134 / +
页数:3
相关论文
共 50 条
  • [1] Automatic Left Atrial Wall Segmentation from Contrast-Enhanced CT Angiography Images
    Tao, Qian
    Shahzad, Rahil
    Berendsen, Floris F.
    van der Geest, Rob J.
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: IMAGING AND MODELLING CHALLENGES, 2016, 2017, 10124 : 220 - 227
  • [2] Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images
    Doshi, Trushali
    Soraghan, John
    Grose, Derek
    MacKenzie, Kenneth
    Petropoulakis, Lykourgos
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [3] A Tumour and Liver Automatic Segmentation (ATLAS) Dataset on Contrast-Enhanced Magnetic Resonance Imaging for Hepatocellular Carcinoma
    Quinton, Felix
    Popoff, Romain
    Presles, Benoit
    Leclerc, Sarah
    Meriaudeau, Fabrice
    Nodari, Guillaume
    Lopez, Olivier
    Pellegrinelli, Julie
    Chevallier, Olivier
    Ginhac, Dominique
    Vrigneaud, Jean-Marc
    Alberini, Jean-Louis
    DATA, 2023, 8 (05)
  • [4] Liver segmentation for contrast-enhanced MR images using partitioned probabilistic model
    László Ruskó
    György Bekes
    International Journal of Computer Assisted Radiology and Surgery, 2011, 6 : 13 - 20
  • [5] Liver segmentation for contrast-enhanced MR images using partitioned probabilistic model
    Rusko, Laszlo
    Bekes, Gyoergy
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2011, 6 (01) : 13 - 20
  • [6] A self-supervised strategy for fully automatic segmentation of renal dynamic contrast-enhanced magnetic resonance images
    Huang, Wenjian
    Li, Hao
    Wang, Rui
    Zhang, Xiaodong
    Wang, Xiaoying
    Zhang, Jue
    MEDICAL PHYSICS, 2019, 46 (10) : 4417 - 4430
  • [7] Automatic left ventricle segmentation from cardiac magnetic resonance images using a capsule network
    He, Yangsu
    Qin, Wenjian
    Wu, Yin
    Zhang, Mengxi
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    Hu, Zhanli
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (03) : 541 - 553
  • [8] Unsupervised tissue segmentation from dynamic contrast-enhanced magnetic resonance imaging
    Chiusano, Gabriele
    Stagliano, Alessandra
    Basso, Curzio
    Verri, Alessandro
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2014, 61 (01) : 53 - 61
  • [9] Automatic Segmentation of Liver From CT Images Using Probabilistic Atlas and Template Matching
    Chen, Yen-Wei
    Foruzan, Amir H.
    Dong, Chunhua
    Tateyama, Tomoko
    Han, Xianhua
    SMART DIGITAL FUTURES 2014, 2014, 262 : 412 - 420