A Radiomics-Based Light Gradient Boosting Machine to Predict Radiation-Induced Toxicities in Nasopharynx Cancer Patients Receiving Chemoradiotherapy

被引:0
|
作者
Jiang, Z. [1 ]
Liang, Y. [2 ]
Wang, X. [3 ]
Min, Z. [4 ]
Feng, M. [4 ]
Kuang, Y. [5 ]
机构
[1] Univ Nevada, Las Vegas, NV 89154 USA
[2] Chinese Acad Med Sci, Sichuan Ctr, Canc Hosp, Chengdu, Peoples R China
[3] Radiat Oncol Key Lab Sichuan Prov, Chengdu, Peoples R China
[4] Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Chengdu, Peoples R China
[5] Univ Nevada, Las Vegas, NV 89154 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PO-GePV-T-
引用
收藏
页码:E852 / E852
页数:1
相关论文
共 50 条
  • [1] A Radiomics-Based Light Gradient Boosting Machine to Predict Radiation-Induced Toxicities in Nasopharynx Cancer Patients Receiving Chemoradiotherapy
    Jiang, Z.
    Liang, Y.
    Wang, X.
    Zhuang, M.
    Feng, M.
    Kuang, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E118 - E118
  • [2] Benchmarking machine learning approaches to predict radiation-induced toxicities in lung cancer patients
    Nunez-Benjumea, Francisco J.
    Gonzalez-Garcia, Sara
    Moreno-Conde, Alberto
    Riquelme-Santos, Jose C.
    Lopez-Guerra, Jose L.
    CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2023, 41
  • [3] Chemoradiotherapy-treated anal cancer patients radiomics-based stratification to predict DSS.
    De Luca, V.
    Boldrini, L.
    Manfrida, S.
    Reina, S.
    Carano, D.
    Gatta, R.
    Votta, C.
    Tagliaferri, L.
    Marazzi, F.
    Mariani, S.
    Barbaro, B.
    Valentini, V.
    Gambacorta, M. A.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S1111 - S1113
  • [4] Radiomics-Based Machine Learning with Natural Gradient Boosting for Continuous Survival Prediction in Glioblastoma
    Karabacak, Mert
    Patil, Shiv
    Gersey, Zachary Charles
    Komotar, Ricardo Jorge
    Margetis, Konstantinos
    CANCERS, 2024, 16 (21)
  • [5] Ultrasound Radiomics-Based Machine Learning to Evaluate Radiation-Induced Acute Breast Toxicity in Breast Radiotherapy
    Wang, J.
    Zhou, B.
    Yang, X.
    Lin, J.
    Godette, K.
    Kahn, S.
    Torres, M.
    Liu, T.
    MEDICAL PHYSICS, 2022, 49 (06) : E587 - E587
  • [6] Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis
    Avanzo, Michele
    Pirrone, Giovanni
    Vinante, Lorenzo
    Caroli, Angela
    Stancanello, Joseph
    Drigo, Annalisa
    Massarut, Samuele
    Mileto, Mario
    Urbani, Martina
    Trovo, Marco
    el Naqa, Issam
    De Paoli, Antonino
    Sartor, Giovanna
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [7] Radiomics-Based Predictive Model of Radiation-Induced Liver Disease in Hepatocellular Carcinoma Patients Receiving Stereo-Tactic Body Radiotherapy
    Shen, Po-Chien
    Huang, Wen-Yen
    Dai, Yang-Hong
    Lo, Cheng-Hsiang
    Yang, Jen-Fu
    Su, Yu-Fu
    Wang, Ying-Fu
    Lu, Chia-Feng
    Lin, Chun-Shu
    BIOMEDICINES, 2022, 10 (03)
  • [8] Development and Validation of a Radiomics-Based Model to Predict Overall Survival after Definitive Chemoradiotherapy in Patients with Esophageal Cancer
    Cui, J.
    Li, L.
    Yuan, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E290 - E291
  • [9] Radiomics-based Assessment of Radiation-induced Lung Injury After Stereotactic Body Radiotherapy
    Moran, Angel
    Daly, Megan E.
    Yip, Stephen S. F.
    Yamamoto, Tokihiro
    CLINICAL LUNG CANCER, 2017, 18 (06) : E425 - E431
  • [10] Radiomics-based machine learning and deep learning to predict serosal involvement in gallbladder cancer
    Shengnan Zhou
    Shaoqi Han
    Weijie Chen
    Xuesong Bai
    Weidong Pan
    Xianlin Han
    Xiaodong He
    Abdominal Radiology, 2024, 49 : 3 - 10