Short-Term Forecasting of Emerging On-Demand Ride Services

被引:0
|
作者
Liu, Jiaokun [1 ]
Cui, Erjia [1 ]
Hu, Haoqiang [1 ]
Chen, Xiaowei [1 ]
Chen, Xiqun [1 ]
Chen, Feng [2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Zhejiang, Peoples R China
[2] Tongji Univ, Minist Educ, Key Lab Rd & Traff Engn, 4800 Caoan Rd, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
On-demand ride services; ridesourcing; spatial and temporal demand pattern; LASSO; random forest; support vector regression; ARIMA; MODEL SELECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the last few years, on-demand ride services boomed worldwide, and different modes of ridesourcing services emerged, too. However, there have been few qualitative and quantitative analyses on these ride service patterns, partially due to the lack or unavailability of detailed on-demand ride service data. In this paper, we analyze the real-world individual-level order and the trip data extracted from the DiDi's on-demand mobility platform in Hangzhou, China. This study intends to understand the temporal and spatial travel pattern of passengers' demand and ride services which include four types, i.e., Taxi Hailing, Private Car Service, Hitch, and Express. We study the relationship between different service modes of the drivers from a selected region in specific time periods. In order to predict travel demand of the aforementioned on-demand ride services, we utilize LASSO (least absolute shrinkage and selection operator) to rank features of the on-demand platform data (e.g., distance, fee, and waiting time). An on-demand ride prediction model is established based on the random forest (RF), which is then compared with the autoregressive integrated moving average (ARIMA) and support vector regression (SVR). The results show that RF outperforms other models and it is utilized to provide an insight for forecasting the demand of distinctive on-demand ride service patterns. To the best knowledge of authors, this paper is among the first attempts to learn the temporal and spatial travel patterns, also to forecast emerging on-demand ride services.
引用
收藏
页码:489 / 495
页数:7
相关论文
共 50 条
  • [1] Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach
    Ke, Jintao
    Zheng, Hongyu
    Yang, Hai
    Chen, Xiqun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 85 : 591 - 608
  • [2] Short-Term Demand Forecasting for on-Demand Mobility Service
    Qian, Xinwu
    Ukkusuri, Satish V.
    Yang, Chao
    Yan, Fenfan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 1019 - 1029
  • [3] FORECASTING SHORT-TERM DEMAND
    REISMAN, A
    GUDAPATI, K
    CHANDRASEKARAN, R
    DARUKHANAVALA, P
    MORRISON, D
    INDUSTRIAL ENGINEERING, 1976, 8 (05): : 38 - 45
  • [4] Short-Term Prediction of Demand for Ride-Hailing Services: A Deep Learning Approach
    Long Chen
    Piyushimita (Vonu) Thakuriah
    Konstantinos Ampountolas
    Journal of Big Data Analytics in Transportation, 2021, 3 (2): : 175 - 195
  • [5] Short-term forecasting of emergency medical services demand exploring machine learning☆
    Shahidian, Nika
    Abreu, Paulo
    Santos, Daniel
    Barbosa-Povoa, Ana
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 200
  • [6] ANALYSIS AND SHORT-TERM FORECASTING OF ELECTRICITY DEMAND
    BOROS, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T340 - T342
  • [7] Short-term water demand forecasting: a review
    Ghannam, Safa
    Hussain, Farookh
    AUSTRALASIAN JOURNAL OF WATER RESOURCES, 2024,
  • [8] District Heating Demand Short-Term Forecasting
    Petrichenko, Roman
    Baltputnis, Karlis
    Sauhats, Antans
    Sobolevsky, Dimitry
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2017,
  • [9] Short-term municipal water demand forecasting
    Bougadis, J
    Adamowski, K
    Diduch, R
    HYDROLOGICAL PROCESSES, 2005, 19 (01) : 137 - 148
  • [10] Short-term forecasting of district heating demand
    Petrichenko, Roman
    Sobolevsky, Dmitry
    Sauhats, Antans
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,