Derivations and local derivations on strongly double triangle subspace lattice algebras

被引:9
|
作者
Pang Yongfeng [1 ]
Yang Wei [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2010年 / 58卷 / 07期
关键词
derivation; local derivation; strongly double triangle subspace lattice;
D O I
10.1080/03081080903086427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [image omitted] be a strongly double triangle subspace lattice. It is proved that a derivation from [image omitted] into [image omitted] is quasi-spatial. It is also shown that if is derivable at zero, i.e. if (A)B + A(B) = 0 for all A and B in [image omitted] with AB = 0, then (A) = (A) + A for all [image omitted] where is a derivation and is a scalar. It is also shown that a local derivation from [image omitted] into [image omitted] is a derivation.
引用
收藏
页码:855 / 862
页数:8
相关论文
共 50 条