Some bounds on the largest eigenvalues of graphs

被引:3
|
作者
Li, Shuchao [1 ]
Tian, Yi [1 ]
机构
[1] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
基金
美国国家科学基金会;
关键词
Adjacency index; Signless Laplacian index; Laplacian index; Maximum and minimum degree; LAPLACIAN SPECTRAL-RADIUS; SIGNLESS LAPLACIAN;
D O I
10.1016/j.aml.2011.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple graph with n vertices. The matrix L(G) = D(G) - A(G) is called the Laplacian of G, while the matrix Q(G) = D(G) + A(G) is called the signless Laplacian of G, where D(G) = diag(d(v(1)), d(v(2)), ... , d(v(n))) and A(G) denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let mu(1)(G) (resp. lambda(1)(G), q(1)(G)) be the largest eigenvalue of L(G) (resp. A(G), Q(G)). In this paper, we first present a new upper bound for lambda(1)(G) when each edge of G belongs to at least t (t >= 1) triangles. Some new upper and lower bounds on q(1)(G), q(1)(G) q(1)(G(C)) are determined, respectively. We also compare our results in this paper with some known results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:326 / 332
页数:7
相关论文
共 50 条
  • [1] On the bounds for the largest Laplacian eigenvalues of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    DISCRETE OPTIMIZATION, 2012, 9 (02) : 122 - 129
  • [2] SOME RESULTS ON THE LARGEST AND LEAST EIGENVALUES OF GRAPHS
    Lin, Huiqiu
    Liu, Ruifang
    Shu, Jinlong
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 670 - 682
  • [3] Sharp upper bounds on the second largest eigenvalues of connected graphs
    Zhai, Mingqing
    Lin, Huiqiu
    Wang, Bing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 236 - 241
  • [4] Some bounds on the Laplacian eigenvalues of token graphs
    Dalfo, C.
    Fiol, M. A.
    Messegue, A.
    DISCRETE MATHEMATICS, 2025, 348 (04)
  • [5] Numerical Range of Simple Graphs and Some Bounds for their Eigenvalues
    Tajarrod, M.
    Sistani, T.
    JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (04) : 21 - 37
  • [6] BOUNDS OF EIGENVALUES OF GRAPHS
    HONG, Y
    DISCRETE MATHEMATICS, 1993, 123 (1-3) : 65 - 74
  • [7] THE BOUNDS FOR THE LARGEST EIGENVALUES OF FIBONACCI-SUM AND LUCAS-SUM GRAPHS
    Tasci, D.
    Kizilirmak, G. O.
    Sevgi, E.
    Buyukkose, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 367 - 371
  • [8] Largest and smallest eigenvalues of matrices and some Hamiltonian properties of graphs
    Li, Rao
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 34 - 39
  • [9] The second largest eigenvalues of some Cayley graphs on alternating groups
    Huang, Xueyi
    Huang, Qiongxiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 50 (01) : 99 - 111
  • [10] The second largest eigenvalues of some Cayley graphs on alternating groups
    Xueyi Huang
    Qiongxiang Huang
    Journal of Algebraic Combinatorics, 2019, 50 : 99 - 111