Recyclability of stainless steel (316 L) powder within the additive manufacturing process

被引:57
|
作者
Gorji, Nima E. [1 ]
O'Connor, Rob [1 ]
Mussatto, Andre [1 ]
Snelgrove, Matthew [1 ]
Mani Gonzalez, P. G. [1 ,2 ]
Brabazon, Dermot [1 ]
机构
[1] Dublin City Univ, I Form Addit Mfg Res Ctr, Dublin 9, Ireland
[2] Autonomous Univ Ciudad Juarez, Dept Math & Phys, Inst Engn & Technol, Cd Juarez, Mexico
基金
爱尔兰科学基金会;
关键词
Additive manufacturing; Metallic powder; Powder recycling; Stainless steel 316l; 3D printing; METAL; REUSE; FEEDSTOCK; TI-6AL-4V; OXIDATION;
D O I
10.1016/j.mtla.2019.100489
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using recycled powder during the additive manufacturing processes has been a matter of debate by several research groups and industry worldwide. If not significantly different from the feedstock, the recycled powder can be reused many times without a detrimental impact on the mechanical properties of the final printed parts, which reduces the metallic powder waste and printing time. A detailed characterization and comparison of the feedstock and recycled powders is essential in order to understand the number of times a powder can be recycled. The recycled powders were sampled after 10 times reuse in the Powder Bed Fusion (PBF) process in the 3D printer. In this paper, we have performed a detailed characterization on morphology, microstructure, and the surface and bulk composition of virgin feedstock and recycled stainless steel 316 L powders (over 10 times reused), and correlated these measurements to topography, nanoindentation and hardness tests. We have also performed rarely reported synchrotron surface characterization of both powder sets in order to measure the level of oxidation of the individual metallic elements present in the virgin and recycled steel powder and the way such chemical composition changes following use in the manufacturing process. The results show more satellite and bonded particles in the recycled powder although the particle size is not broadly impacted. The atomic force microscopy results showed a smaller roughness on recycled powders measured on surfaces without satellites which might be due to less surface dendrites on recycled powder surface. Finally, a higher hardness was measured for the recycled powder resulted from the manufacturing process on grains and chemical composition. The results suggest no significant changes on the mechanical properties of the printed parts depending for a certain number of reusing cycles.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Recyclability of stainless steel (316 L) powder within the additive manufacturing process (vol 8, 100489, 2019)
    Gorji, Nima E.
    O'Connor, Rob
    Mussatto, Andre
    Snelgrove, Matthew
    Gonzalez, P. G. Mani
    Brabazon, Dermot
    MATERIALIA, 2020, 12
  • [2] An Investigation into the Recyclability of 316L Stainless Steel Gas-Atomized Powder Used in Laser Powder Bed Fusion Additive Manufacturing
    Mohammadhassan, Tina
    Gelinas, Simon
    Blais, Carl
    JOURNAL OF SUSTAINABLE METALLURGY, 2025,
  • [3] Numerical insights on the spreading of practical 316 L stainless steel powder in SLM additive manufacturing
    Yao, Dengzhi
    Liu, Xiaohan
    Wang, Ju
    Fan, Wei
    Li, Meng
    Fu, Haitao
    Zhang, Hao
    Yang, Xiaohong
    Zou, Qingchuan
    An, Xizhong
    POWDER TECHNOLOGY, 2021, 390 : 197 - 208
  • [4] Sensitization of 316L Stainless Steel made by Laser Powder Bed Fusion Additive Manufacturing
    Snitzer, John
    Lou, Xiaoyuan
    CORROSION, 2023, 79 (02) : 240 - 251
  • [5] Effect of Surface Oxides on the Melting and Solidification of 316L Stainless Steel Powder for Additive Manufacturing
    Xinliang Yang
    Feng Gao
    Fengzai Tang
    Xinjiang Hao
    Zushu Li
    Metallurgical and Materials Transactions A, 2021, 52 : 4518 - 4532
  • [6] Effect of Surface Oxides on the Melting and Solidification of 316L Stainless Steel Powder for Additive Manufacturing
    Yang, Xinliang
    Gao, Feng
    Tang, Fengzai
    Hao, Xinjiang
    Li, Zushu
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (10): : 4518 - 4532
  • [7] Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process
    Chen, Jie
    Wei, Haiyang
    Bao, Kuo
    Zhang, Xianfeng
    Cao, Yang
    Peng, Yong
    Kong, Jian
    Wang, Kehong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 11 (11): : 170 - 179
  • [8] Exploring the efficiency of powder reusing as a sustainable approach for powder bed additive manufacturing of 316L stainless steel
    Jandaghi, Mohammad Reza
    Moverare, Johan
    MATERIALS & DESIGN, 2024, 244
  • [9] Control of texture and microstructure in additive manufacturing of stainless steel 316 L
    Kumar, Deepak
    Shankar, Gyan
    Prashanth, K. G.
    Suwas, Satyam
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [10] Tensile performance of 316L stainless steel by additive manufacturing
    Zhou, Yuecheng
    Zhao, Yang
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2020, 53 (10): : 26 - 35