Hamiltonian reductions of free particles under polar actions of compact Lie groups

被引:8
|
作者
Feher, L. [1 ,2 ]
Pusztai, B. G. [3 ,4 ]
机构
[1] MTA KFKI RMKI, Dept Theoret Phys, Budapest, Hungary
[2] Univ Szeged, Dept Theoret Phys, Szeged, Hungary
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[4] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
基金
匈牙利科学研究基金会;
关键词
Hamiltonian reduction; polar action; integrable system;
D O I
10.1007/s11232-008-0054-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate classical and quantum Hamiltonian reductions of free geodesic systems of complete Riemannian manifolds. We describe the reduced systems under the assumption that the underlying compact symmetry group acts in a polar manner in the sense that there exist regularly embedded, closed, connected submanifolds intersecting all orbits orthogonally in the configuration space. Hyperpolar actions on Lie groups and on symmetric spaces lead to families of integrable systems of the spin Calogero-Sutherland type.
引用
收藏
页码:646 / 658
页数:13
相关论文
共 50 条