Local non-periodic order and diam-mean equicontinuity on cellular automata

被引:0
|
作者
de los Santos Banos, Luguis [1 ]
Garcia-Ramos, Felipe [1 ,2 ]
机构
[1] Univ Autonoma San Luis, Inst Fis, Potosi, Mexico
[2] Univ Autonoma San Luis, CONACyT, Potosi, Mexico
来源
关键词
Cellular automata; mean equicontinuity; odometers;
D O I
10.1080/14689367.2022.2106823
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Diam-mean equicontinuity is a dynamical property that has been of use in the study of non-periodic order. Using some type of 'local' skew product between a shift and an odometer looking cellular automaton (CA), we will show that there exists an almost diam-mean equicontinuous CA that is not almost equicontinuous (and hence not almost locally periodic). Previously, we constructed a CA that is almost mean equicontinuous [L.D.I.S. Banos and F. Garcia-Ramos, Mean equicontinuity and mean sensitivity on cellular automata, Ergodic Theory Dynam. Systems 41 (12) (2021), pp. 3704-3721] but not almost diam-mean equicontinuous [L.D.I.S. Banos and F. Garcia-Ramos, Diameter mean equicontinuity and cellular automata, Proceedings of the 27th International Workshop on Cellular Automata and Discrete Complex Systems, arXiv:2106.09641, 2021].
引用
收藏
页码:666 / 683
页数:18
相关论文
共 50 条