A Deep Learning Model of Dual-Stage License Plate Recognition Applicable to the Data Processing Industry

被引:3
|
作者
Tung, Chun-Liang [1 ]
Wang, Ching-Hsin [2 ]
Peng, Bo-Syuan [1 ]
机构
[1] Natl Chin Yi Univ Technol, Dept Informat Management, Taichung 411030, Taiwan
[2] Natl Chin Yi Univ Technol, Dept Leisure Ind, Taichung 411030, Taiwan
关键词
LOCALIZATION;
D O I
10.1155/2021/3723715
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Automatic License Plate Recognition (ALPR) is a widely used technology. However, due to the influence of complex environmental factors, recognition accuracy and speed of license plate recognition have been challenged and expected. Aiming to construct a sufficiently robust license plate recognition model, this study adopted multitask learning in the license plate detection stage, used the convolutional neural networks of single-stage detection, RetinaFace, and MobileNet, as approaches to license plate location, and completed the license plate sampling through the calculation of license plate skew correction. In the license plate character recognition stage, the Convolutional Recurrent Neural Network (CRNN) integrated with the loss function of the CTC model was employed as a segmentation-free and highly robust method of license plate character recognition. In this study, after the license plate recognition model, DLPR, trained the PVLP dataset of vehicle images provided by company A in Taiwan's data processing industry, it performed tests on the PVLP dataset, indicating that its precision was 98.60%, recognition accuracy was 97.56%, and recognition speed was FPS > 21. In addition, according to the tests on the public AOLP dataset of Taiwan's vehicles, its recognition accuracy was 97.70% and recognition speed was FPS > 62. Therefore, not only can the DLPR model be applied to the license plate recognition of real-time image streams in the future, but also it can assist the data processing industry in enhancing the accuracy of license plate recognition in photos of traffic violations and the performance of traffic service operations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A dual-stage system for real-time license plate detection and recognition on mobile security robots
    Ismail, Amir
    Mehri, Maroua
    Sahbani, Anis
    Ben Amara, Najoua Essoukri
    ROBOTICA, 2025,
  • [2] Automatic License Plate Recognition Using Deep Learning
    Dhedhi, Bhavin
    Datar, Prathamesh
    Chiplunkar, Anuj
    Jain, Kashish
    Rangarajan, Amrith
    Kundargi, Jayshree
    ADVANCES IN DATA SCIENCE, 2019, 941 : 46 - 58
  • [3] Automatic License Plate Recognition Based on Deep Learning
    Bayram, Fatih
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (04): : 955 - 960
  • [4] License Plate Recognition System Based on Deep Learning
    Tsai, Tzung-Yan
    Lu, Zhe-Yu
    Huang, Ching-Chun
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [5] Research on License Plate Character Recognition Technology Based on Image Processing and Deep Learning
    Chen, Chun
    Zhong, Xiaolei
    2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA), 2022, : 1098 - 1102
  • [6] Representation learning in a deep network for license plate recognition
    Rakhshani, Sajed
    Rashedi, Esmat
    Nezamabadi-pour, Hossein
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (19-20) : 13267 - 13289
  • [7] Representation learning in a deep network for license plate recognition
    Sajed Rakhshani
    Esmat Rashedi
    Hossein Nezamabadi-pour
    Multimedia Tools and Applications, 2020, 79 : 13267 - 13289
  • [8] License Plate Location and Recognition Based on Deep Learning
    Li X.
    Min W.
    Han Q.
    Liu R.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (06): : 979 - 987
  • [9] Vehicle license plate recognition using visual attention model and deep learning
    Zang, Di
    Chai, Zhenliang
    Zhang, Junqi
    Zhang, Dongdong
    Cheng, Jiujun
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (03)
  • [10] License Plate Recognition System Based On Contour Properties and Deep Learning Model
    Abedin, Md. Zainal
    Nath, Atul Chandra
    Dhar, Prashengit
    Deb, Kaushik
    Hossain, Mohammad Shahadat
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 590 - 593