Tropicalization of group representations

被引:9
|
作者
Alessandrini, Daniele [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56100 Pisa, Italy
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2008年 / 8卷 / 01期
关键词
D O I
10.2140/agt.2008.8.279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give an interpretation to the boundary points of the compactification of the parameter space of convex projective structures on an n-manifold M. These spaces are closed semi-algebraic subsets of the variety of characters of representations of pi(1) (M) in SLn+1 (R). The boundary was constructed as the "tropicalization" of this semi-algebraic set. Here we show that the geometric interpretation for the points of the boundary can be constructed searching for a tropical analogue to an action of pi(1) (M) on a projective space. To do this we need to construct a tropical projective space with many invertible projective maps. We achieve this using a generalization of the Bruhat-Tits buildings for SLn+1 to nonarchimedean fields with real surjective valuation. In the case n = 1 these objects are the real trees used by Morgan and Shalen to describe the boundary points for the Teichmuller spaces. In the general case they are contractible metric spaces with a structure of tropical projective spaces.
引用
收藏
页码:279 / 307
页数:29
相关论文
共 50 条
  • [1] The logarithmic Picard group and its tropicalization
    Molcho, Samouil
    Wise, Jonathan
    COMPOSITIO MATHEMATICA, 2022, 158 (07) : 1477 - 1562
  • [2] SPHERICAL TROPICALIZATION
    J. TEVELEV
    T. VOGIANNOU
    Transformation Groups, 2021, 26 : 691 - 718
  • [3] ON CONTRACTION OF REPRESENTATIONS OF LORENTZ GROUP TO REPRESENTATIONS OF EUCLIDEAN GROUP
    STROM, S
    ARKIV FOR FYSIK, 1965, 30 (03): : 267 - &
  • [4] Fibers of tropicalization
    Sam Payne
    Mathematische Zeitschrift, 2009, 262
  • [5] Fibers of tropicalization
    Payne, Sam
    MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (02) : 301 - 311
  • [6] Local tropicalization
    Popescu-Pampu, Patrick
    Stepanov, Dmitry
    ALGEBRAIC AND COMBINATORIAL ASPECTS OF TROPICAL GEOMETRY, 2013, 589 : 253 - +
  • [7] SPHERICAL TROPICALIZATION
    Tevelev, J.
    Vogiannou, T.
    TRANSFORMATION GROUPS, 2021, 26 (02) : 691 - 718
  • [8] TROPICALIZATION - CRUZ,VH
    DAYDITOLSON, S
    BILINGUAL REVIEW-REVISTA BILINGUE, 1979, 6 (01): : 94 - 96
  • [9] On the tropicalization of the Hilbert scheme
    Alessandrini, Daniele
    Nesci, Michele
    COLLECTANEA MATHEMATICA, 2013, 64 (01) : 39 - 59
  • [10] TROPICALIZATION OF GRAPH PROFILES
    Blekherman, Grigoriy
    Raymond, Annie
    Singh, Mohit
    Thomas, Rekha R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (09) : 6281 - 6310