Knowledge discovery in databases based on deep neural networks

被引:0
|
作者
Tan, Yuanhua [1 ]
Zhang, Chaolin [1 ]
Ma, Yonglin [2 ]
Mao, Yici [3 ]
机构
[1] Karamay Hongyou Software Co, Xinjiang 834000, Peoples R China
[2] Applicat Management Off, SINOPEC IT Management Dept, Beijing 100728, Peoples R China
[3] Karamay Municipal Peoples Govt Bur Informat Ind, Xinjiang 834000, Peoples R China
关键词
Knowledge discovery; deep neural network; sparse auto-encoder; softmax classification; IMAGE; KERNEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Knowledge discovery in databases (KDD) has received great progress in recent years for the need of mining useful knowledge in the ever growing information. The advances in machine learning technologies effectively promote KDD in the procedures of feature extraction and data categorization. This paper introduces a framework that combines feature extraction and categorization of the collected data in order to recognize useful structured patterns that underlies the raw data. This frame work consists of three modules: data pre-processing module, feature extraction module, and feature classification module. We propose a four-layered deep neural network as the feature extraction architecture. Each layer is trained in an unsupervised way as one auto-encoder with sparsity constraint. We employ a softmax classifier to assign a label to the extracted feature. The supervised and unsupervised training strategies are discussed at the end of this paper to disambiguate the training procedure of the entire model.
引用
收藏
页码:1222 / 1227
页数:6
相关论文
共 50 条
  • [1] Knowledge discovery based on neural networks
    Fu, LM
    COMMUNICATIONS OF THE ACM, 1999, 42 (11) : 47 - 50
  • [2] Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
    Steven A. Hicks
    Jonas L. Isaksen
    Vajira Thambawita
    Jonas Ghouse
    Gustav Ahlberg
    Allan Linneberg
    Niels Grarup
    Inga Strümke
    Christina Ellervik
    Morten Salling Olesen
    Torben Hansen
    Claus Graff
    Niels-Henrik Holstein-Rathlou
    Pål Halvorsen
    Mary M. Maleckar
    Michael A. Riegler
    Jørgen K. Kanters
    Scientific Reports, 11
  • [3] Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
    Hicks, Steven A.
    Isaksen, Jonas L.
    Thambawita, Vajira
    Ghouse, Jonas
    Ahlberg, Gustav
    Linneberg, Allan
    Grarup, Niels
    Strumke, Inga
    Ellervik, Christina
    Olesen, Morten Salling
    Hansen, Torben
    Graff, Claus
    Holstein-Rathlou, Niels-Henrik
    Halvorsen, Pal
    Maleckar, Mary M.
    Riegler, Michael A.
    Kanters, Jorgen K.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Topic prediction and knowledge discovery based on integrated topic modeling and deep neural networks approaches
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2441 - 2457
  • [5] Localized neural network based distributional learning for knowledge discovery in protein databases
    Pokrajac, D
    Lazarevic, A
    Singleton, T
    Obradovic, Z
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1663 - 1668
  • [6] Knowledge discovery using neural networks
    Kaikhah, K
    Doddameti, S
    INNOVATIONS IN APPLIED ARTIFICIAL INTELLIGENCE, 2004, 3029 : 20 - 28
  • [7] Knowledge discovery by inductive neural networks
    Fu, LM
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1999, 11 (06) : 992 - 998
  • [8] Neural Network Based Efficient Knowledge Discovery in Hospital Databases Using RFID Technology
    NaliniPriya, G.
    AnandhaKumar, P.
    2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, : 74 - 79
  • [9] Knowledge discovery in clinical databases with neural network evidence combination
    Srinivasan, T
    Chandrasekhar, A
    Seshadri, J
    Jonathan, JBS
    2005 INTERNATIONAL CONFERENCE ON INTELLIGENT SENSING AND INFORMATION PROCESSING, PROCEEDINGS, 2005, : 512 - 517
  • [10] A hybrid annealing-neural approach to knowledge discovery in databases
    Abdelbar, AM
    Khalil, AH
    Andrews, EAM
    INFORMATION REUSE AND INTEGRATION, 2001, : 42 - 47