Respiration patterns in the deep ocean

被引:51
|
作者
Andersson, JH [1 ]
Wijsman, JWM [1 ]
Herman, PMJ [1 ]
Middelburg, JJ [1 ]
Soetaert, K [1 ]
Heip, C [1 ]
机构
[1] Netherlands Inst Ecol, Ctr Estuarine & Marine Ecol, Yerseke, Netherlands
关键词
D O I
10.1029/2003GL018756
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The biological pump affects atmospheric CO2 levels and fuels most heterotrophic activity in the deep ocean. The efficiency of this pump depends on the rate of carbon fixation, export out of the euphotic zone and the depth of respiration. Here we study the depth dependence of respiration patterns, hence particulate carbon flux, using a compiled data set of sediment oxygen consumption rates. We show that the depth relationship can best be described by a double exponential model. For the upper part of the ocean, our resulting equation is similar to previous flux-depth relationships but predicted fluxes are significantly larger in deeper waters. This implies a more efficient biological pump. Total oceanic respiration below the shelf break (200 m) is estimated to be 827 Tmol O-2 yr(-1).
引用
收藏
页码:L033041 / 4
页数:4
相关论文
共 50 条
  • [1] Respiration Patterns in the Dark Ocean
    Sulpis, Olivier
    Trossman, David S.
    Holzer, Mark
    Jeansson, Emil
    Lauvset, Siv K.
    Middelburg, Jack J.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2023, 37 (08)
  • [2] Ocean-Scale Patterns in Community Respiration Rates along Continuous Transects across the Pacific Ocean
    Wilson, Jesse M.
    Severson, Rodney
    Beman, J. Michael
    PLOS ONE, 2014, 9 (07):
  • [3] Respiration in the open ocean
    del Giorgio, PA
    Duarte, CM
    NATURE, 2002, 420 (6914) : 379 - 384
  • [4] Respiration in the open ocean
    Paul A. del Giorgio
    Carlos M. Duarte
    Nature, 2002, 420 : 379 - 384
  • [5] Improved sleep stage predictions by deep learning of photoplethysmogram and respiration patterns
    Kazemi, Kianoosh
    Abiri, Arash
    Zhou, Yongxiao
    Rahmani, Amir
    Khayat, Rami N.
    Liljeberg, Pasi
    Khine, Michelle
    Computers in Biology and Medicine, 2024, 179
  • [6] Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes
    Prochaska, J. Xavier
    Cornillon, Peter C.
    Reiman, David M.
    REMOTE SENSING, 2021, 13 (04) : 1 - 18
  • [7] Patterns of eukaryotic diversity from the surface to the deep-ocean sediment
    Cordier, Tristan
    Angeles, Ines Barrenechea
    Henry, Nicolas
    Lejzerowicz, Franck
    Berney, Cedric
    Morard, Raphael
    Brandt, Angelika
    Cambon-Bonavita, Marie-Anne
    Guidi, Lionel
    Lombard, Fabien
    Arbizu, Pedro Martinez
    Massana, Ramon
    Orejas, Covadonga
    Poulain, Julie
    Smith, Craig R.
    Wincker, Patrick
    Arnaud-Haond, Sophie
    Gooday, Andrew J.
    de Vargas, Colomban
    Pawlowski, Jan
    SCIENCE ADVANCES, 2022, 8 (05)
  • [8] The deep-sea copepod fauna of the Southern Ocean: patterns and processes
    Peter Ward
    Rachael S. Shreeve
    Hydrobiologia, 2001, 453-454 : 37 - 54
  • [9] Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean
    Degen, Renate
    Vedenin, Andrey
    Gusky, Manuela
    Boetius, Antje
    Brey, Thomas
    POLAR RESEARCH, 2015, 34
  • [10] The deep-sea copepod fauna of the Southern Ocean: patterns and processes
    Ward, P
    Shreeve, RS
    HYDROBIOLOGIA, 2001, 453 (1-3) : 37 - 54