On Diverse Noises in Hyperspectral Unmixing

被引:16
|
作者
Li, Chunzhi [1 ]
Chen, Xiaohua [1 ]
Jiang, Yunliang [1 ]
机构
[1] Huzhou Univ, Sch Informat Engn, Hangzhou 313000, Zhejiang, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 10期
基金
中国国家自然科学基金;
关键词
Antinoise model; Itakura-Saito (IS) divergence; multiplicative noise; random measure errors; spectral unmixing (SU); ALGORITHM; SPARSE; EXTRACTION;
D O I
10.1109/TGRS.2015.2421993
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Traditional spectral unmixing methods are usually based on the linear mixture model (LMM) or nonlinear mixture model (NLMM), in which only the additive noise is considered. However, in hyperspectral applications, the additive, multiplicative, and mixed noises play important roles. In this paper, we propose an antinoise model for hyperspectral unmixing. In the antinoise model, all the additive, multiplicative and mixed noises are addressed. To deal with the problems faced by LMM or NLMM and to tackle the antinoise model, an antinoise model based hyperspectral unmixing method is presented, where block coordinate descent is employed to solve an approximated L-0 norm constraint, then a nonnegative matrix factorization (NMF) method is presented, which is based on the bounded Itakura-Saito divergence. The experimental results on both synthetic and real hyperspectral data sets demonstrate the efficacy of the proposed model and the corresponding method.
引用
收藏
页码:5388 / 5402
页数:15
相关论文
共 50 条
  • [1] Blind hyperspectral unmixing
    Nascimento, Josd M. P.
    Bioucas-Dias, Jose M.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIII, 2007, 6748
  • [2] KMNET for Hyperspectral Unmixing
    Dhondi, Sankalp
    Sarma, T. Hitendra
    Reddy, Abignya
    Lakshmi, S. Sree
    Rao, K. Ram Mohan
    2023 IEEE India Geoscience and Remote Sensing Symposium, InGARSS 2023, 2023,
  • [3] Unmixing hyperspectral data
    Parra, L
    Spence, C
    Sajda, P
    Ziehe, A
    Müller, KR
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 942 - 948
  • [4] An Antinoise Method for Hyperspectral Unmixing
    Li, Chunzhi
    Zhou, Aimin
    Zhang, Guixu
    Fang, Faming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (03) : 636 - 640
  • [5] A Sturdy Nonlinear Hyperspectral Unmixing
    Venkata Sireesha, M.
    Naganjaneyulu, P. V.
    Babulu, K.
    IETE JOURNAL OF RESEARCH, 2023, 69 (02) : 762 - 777
  • [6] Hyperspectral Unmixing With lq Regularization
    Sigurdsson, Jakob
    Ulfarsson, Magnus Orn
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11): : 6793 - 6806
  • [7] Unmixing Hyperspectral Intimate Mixtures
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [8] Superpixel construction for hyperspectral unmixing
    Li, Zeng
    Chen, Jie
    Rahardja, Susanto
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 647 - 651
  • [9] Parallel Hyperspectral Unmixing on GPUs
    Nascimento, Jose M. P.
    Bioucas-Dias, Jose M.
    Rodriguez Alves, Jose M.
    Silva, Vitor
    Plaza, Antonio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (03) : 666 - 670
  • [10] SPARSE DISTRIBUTED HYPERSPECTRAL UNMIXING
    Sigurdsson, Jakob
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Bioucas-Dias, Jose M.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6994 - 6997