Compactly epi-Lipschitzian convex sets and functions in normed spaces

被引:0
|
作者
Borwein, J [1 ]
Lucet, Y
Mordukhovich, B
机构
[1] Simon Fraser Univ, Dept Math & Stat, CECM, Burnaby, BC V5A 1S6, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
compactly epi-Lipschitzian set; convex set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several characterizations of compact epi-Lipschitzness for closed convex sets in normed vector spaces. In particular, we show that a closed convex set is compactly epi-lipschitzian if and only if it has nonempty relative interior, finite codimension, and spans a closed subspace. Next, we establish that all boundary points of compactly epi-Lipschitzian sets are proper support points. We provide the corresponding results for functions hy using inf-convolutions and the Legendre Fenchel transform. We also give an application to constrained optimization with compactly epi-Lipschitzian data via a generalized Slater condition involving relative interiors.
引用
收藏
页码:375 / 393
页数:19
相关论文
共 50 条
  • [1] On a class of compactly epi-Lipschitzian sets
    Jourani, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) : 471 - 483
  • [2] Representations of epi-Lipschitzian sets
    Czarnecki, Marc-Olivier
    Gudovich, Anastasia Nikolaevna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) : 2361 - 2367
  • [3] Epi-Lipschitzian reachable sets of differential inclusions
    Lorenz, Thomas
    SYSTEMS & CONTROL LETTERS, 2008, 57 (09) : 703 - 707
  • [4] Smooth representations of epi-Lipschitzian subsets of Rn
    Cornet, B
    Czarnecki, MO
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (02) : 139 - 160
  • [5] Smooth representations of epi-Lipschitzian subsets of Rn
    Cornet, Bernard
    Czarnecki, Marc-Olivier
    Nonlinear Analysis, Theory, Methods and Applications, 1999, 37 (02): : 139 - 160
  • [6] Convex sets in probabilistic normed spaces
    Aghajani, Asadollah
    Nourouzi, Kourosh
    CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 322 - 328
  • [7] Smooth normal approximations of epi-Lipschitzian subsets of Rn
    Cornet, Bernard
    Czarnecki, Marc-Olivier
    SIAM Journal on Control and Optimization, 37 (03): : 710 - 730
  • [8] Smooth normal approximations of epi-Lipschitzian subsets of Rn
    Cornet, B
    Czarnecki, MO
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) : 710 - 730
  • [9] Weakly Convex Sets in Asymmetric Normed Spaces
    Lopushanski, Mariana
    2017 CONSTRUCTIVE NONSMOOTH ANALYSIS AND RELATED TOPICS (DEDICATED TO THE MEMORY OF V.F. DEMYANOV) (CNSA), 2017, : 199 - 200
  • [10] SEPARATION OF CONVEX SETS IN EXTENDED NORMED SPACES
    Beer, G.
    Vanderwerff, J.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (02) : 145 - 165