Multiple imputations and the missing censoring indicator model
被引:9
|
作者:
Subramanian, Sundarraman
论文数: 0引用数: 0
h-index: 0
机构:
New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USANew Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
Subramanian, Sundarraman
[1
]
机构:
[1] New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
Semiparametric random censorship (SRC) models (Dikta, 1998) provide an attractive framework for estimating survival functions when censoring indicators are fully or partially available. When there are missing censoring indicators (MCIs), the SRC approach employs a model-based estimate of the conditional expectation of the censoring indicator given the observed time, where the model parameters are estimated using only the complete cases. The multiple imputations approach, on the other hand, utilizes this model-based estimate to impute the missing censoring indicators and form several completed data sets. The Kaplan-Meier and SRC estimators based on the several completed data sets are averaged to arrive at the multiple imputations Kaplan-Meier (MIKM) and the multiple imputations SRC (MISRC) estimators. While the MIKM estimator is asymptotically as efficient as or less efficient than the standard SRC-based estimator that involves no imputations, here we investigate the performance of the MISRC estimator and prove that it attains the benchmark variance set by the SRC-based estimator. We also present numerical results comparing the performances of the estimators under several misspecified models for the above mentioned conditional expectation. (C) 2010 Elsevier Inc. All rights reserved.
机构:
New Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USANew Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
Subramanian, Sundarraman
Bean, Derek
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USANew Jersey Inst Technol, Ctr Appl Math & Stat, Dept Math Sci, Newark, NJ 07102 USA
机构:
New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USANew Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
Subramanian, Sundarraman
Bandyopadhyay, Dipankar
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ S Carolina, Div Biostat & Epidemiol, Charleston, SC 29425 USANew Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, Dept Estat, BR-91509900 Porto Alegre, RS, Brazil
Univ Fed Rio Grande do Sul, Fac Med, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, Dept Estat, BR-91509900 Porto Alegre, RS, Brazil
Nunes, Luciana Neves
Klueck, Mariza Machado
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Fac Med, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, Dept Estat, BR-91509900 Porto Alegre, RS, Brazil
Klueck, Mariza Machado
Guimaraes Fachel, Jandyra Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Fac Med, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Matemat, Dept Estat, BR-91509900 Porto Alegre, RS, Brazil