Detection of Tumoral Epithelial Lesions Using Hyperspectral Imaging and Deep Learning

被引:6
|
作者
de Lucena, Daniel Vitor [1 ,2 ]
Soares, Anderson da Silva [2 ]
Coelho, Clarimar Jose [3 ]
Wastowski, Isabela Jube [4 ]
Galvao Filho, Arlindo Rodrigues [3 ]
机构
[1] Inst Fed Educ Ciencias & Tecnol Goias, Luziania, Brazil
[2] Univ Fed Goias, Inst Informat, Goiania, Go, Brazil
[3] Pontificia Univ Catolica Goias, Escola Informat, Goiania, Go, Brazil
[4] Univ Estadual Goias, Posgrad Ciencias Aplicadas Prod Saude, Goiania, Go, Brazil
来源
关键词
Short-Wave InfraRed; Hyperspectral Imaging; Deep learning; Skin lesions; Dysplastic Nevus; Melanoma; CLASSIFICATION; SKIN; MELANOMA;
D O I
10.1007/978-3-030-50420-5_45
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new method for the analysis and classification of HSI images. The method uses deep learning to interpret the molecular vibrational behaviour of healthy and tumoral human epithelial tissue, based on data gathered via SWIR (short-wave infrared) spectroscopy. We analyzed samples of Melanoma, Dysplastic Nevus and healthy skin. Preliminary results show that human epithelial tissue is sensitive to SWIR to the point of making possible the differentiation between healthy and tumor tissues. We conclude that HSI-SWIR can be used to build new methods for tumor classification.
引用
收藏
页码:599 / 612
页数:14
相关论文
共 50 条
  • [1] Airborne Object Detection Using Hyperspectral Imaging: Deep Learning Review
    Pham, T. T.
    Takalkar, M. A.
    Xu, M.
    Hoang, D. T.
    Truong, H. A.
    Dutkiewicz, E.
    Perry, S.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT I: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PT I, 2019, 11619 : 306 - 321
  • [2] Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
    Ma, Ling
    Lu, Guolan
    Wang, Dongsheng
    Qin, Xulei
    Chen, Zhuo Georgia
    Fei, Baowei
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2019, 2 (01)
  • [3] Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning
    Halicek, Martin
    Dormer, James D.
    Little, James, V
    Chen, Amy Y.
    Fei, Baowei
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (03) : 1383 - 1400
  • [4] Detection of hidden bruises on kiwifruit using hyperspectral imaging combined with deep learning
    Bu, Youhua
    Luo, Jianing
    Li, Jiabao
    Chi, Qian
    Guo, Wenchuan
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2024, 59 (09): : 5975 - 5984
  • [5] Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
    Ling Ma
    Guolan Lu
    Dongsheng Wang
    Xulei Qin
    Zhuo Georgia Chen
    Baowei Fei
    Visual Computing for Industry, Biomedicine, and Art, 2
  • [6] Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning
    Nguyen, Canh
    Sagan, Vasit
    Maimaitiyiming, Matthew
    Maimaitijiang, Maitiniyazi
    Bhadra, Sourav
    Kwasniewski, Misha T.
    SENSORS, 2021, 21 (03) : 1 - 23
  • [7] Detection of Early Subtle Bruising in Strawberries Using VNIR Hyperspectral Imaging and Deep Learning
    Feng, Runze
    Han, Xin
    Lan, Yubin
    Gou, Xinyue
    Zhang, Jingzhi
    Wang, Huizheng
    Zhao, Shuo
    Kong, Fanxia
    VIBRATIONAL SPECTROSCOPY, 2025, 138
  • [8] Face Recognition Using Hyperspectral Imaging And Deep Learning
    Senthilkumar, Radha
    Srinidhi, V.
    Neelavathi, S.
    Devi, S. Renuga
    2018 10TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2018, : 377 - 382
  • [9] Bridge defect detection using small sample data with deep learning and Hyperspectral imaging
    Peng, Xiong
    Wang, Pengtao
    Zhou, Kun
    Yan, Zhipeng
    Zhong, Xingu
    Zhao, Chao
    AUTOMATION IN CONSTRUCTION, 2025, 170
  • [10] Automatic Disease Detection of Basal Stem Rot Using Deep Learning and Hyperspectral Imaging
    Yong, Lai Zhi
    Khairunniza-Bejo, Siti
    Jahari, Mahirah
    Muharam, Farrah Melissa
    AGRICULTURE-BASEL, 2023, 13 (01):