On some self-adjoint fractional finite difference equations

被引:0
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Rezapour, Shahram [4 ]
Salehi, Saeid [4 ]
机构
[1] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[2] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[3] Inst Space Sci, Bucharest, Romania
[4] Azarbaijan Shahid Madani Univ, Dept Math, Azarshahr, Tabriz, Iran
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, the existence of solution for the fractional self-adjoint equation Delta(nu)(nu-1) (p Delta y)(t) = h(t) for order 0 < nu <= 1 was reported in [9]. In this paper, we investigated the self-adjoint fractional finite difference equation Delta(nu)(nu-2)(p Delta u(t) = j(t,p(t+nu - 2)) via the boundary conditions y(nu - 2) = 0 , such that Delta y(nu - 2) = 0 and Delta y(nu+b) = 0. Also, we analyzed the self-adjoing fractional finite difference equation Delta(nu()(nu-2)p Delta(2)y)(t) = j(t,[(t+nu - 2)Delta(2)y(t+nu-3)) via the boundary conditions y(nu - 2) = 0, Delta y(nu - 2) = 0, Delta(2)y(nu - 2) = 0 and Delta 2y(nu+b) = 0. Finally, we conclude a result about the existence of solution for the general equation Delta(nu()(nu-2)p Delta(m)y)(t) = h(t,p(t+nu - m - 1)Delta(m)y(t+nu - m - 1)) via the boundary conditions y(nu - 2) = Delta y(nu - 2) = Delta(2)y(nu - 2) = center dot center dot center dot Delta(m)y(nu+b) = 0 for oder 1 < nu <= 2.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 50 条