Generic programming for high-performance scientific applications

被引:3
|
作者
Lee, LQ [1 ]
Lumsdaine, A [1 ]
机构
[1] Indiana Univ, Pervas Technol Labs, Open Syst Lab, Bloomington, IN 47405 USA
来源
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE | 2005年 / 17卷 / 7-8期
关键词
C plus; generic programming; high-performance computing; iterative solvers; Krylov subspace; message passing; templates;
D O I
10.1002/cpe.864
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present case studies that apply generic programming to the development of high-performance parallel code for solving two archetypal partial differential equations (PDEs). We examine the overall structure of the example scientific codes and consider their generic implementation. With a generic approach it is a straightforward matter to reuse software components from different sources; implementations with components from the Iterative Template Library (ITL), the Matrix Template Library (MTL), Blitz++, A++/P++, and Fortran BLAS are presented. Our newly developed Generic Message Passing library is used for communication. We compare the generic implementations with equivalent implementations developed with alternative libraries and languages and discuss performance as well as software engineering issues. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:941 / 965
页数:25
相关论文
共 50 条
  • [1] Generic programming and high-performance libraries
    Gregor, D
    Järvi, J
    Kulkarni, M
    Lumsdaine, A
    Musser, D
    Schupp, S
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2005, 33 (2-3) : 145 - 164
  • [2] Generic Programming and High-Performance Libraries
    Douglas Gregor
    Jaakko Järvi
    Mayuresh Kulkarni
    Andrew Lumsdaine
    David Musser
    Sibylle Schupp
    International Journal of Parallel Programming, 2005, 33 : 145 - 164
  • [3] A generic programming environment for high-performance mathematical libraries
    Schreiner, W
    Danielczyk-Landerl, W
    Marin, M
    Stöcher, W
    GENERIC PROGRAMMING, 2000, 1766 : 256 - 267
  • [4] A Generic High-Performance Method for Deinterleaving Scientific Data
    Schendel, Eric R.
    Harenberg, Steve
    Tang, Houjun
    Vishwanath, Venkatram
    Papka, Michael E.
    Samatova, Nagiza F.
    EURO-PAR 2013 PARALLEL PROCESSING, 2013, 8097 : 571 - 582
  • [5] CUDA: Scalable parallel programming for high-performance scientific computing
    Luebke, David
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 836 - 838
  • [6] The Matrix Template Library: Generic components for high-performance scientific computing
    Siek, JG
    Lumsdaine, A
    COMPUTING IN SCIENCE & ENGINEERING, 1999, 1 (06) : 70 - +
  • [7] A programming environment for high-performance volume visualization applications
    Zuffo, MK
    Grant, AJ
    Lopes, RD
    Santos, ET
    Zuffo, JA
    COMPUTERS & GRAPHICS, 1996, 20 (03) : 385 - 394
  • [8] High-Performance Spatial Data Compression for Scientific Applications
    Kriemann, Ronald
    Ltaief, Hatem
    Minh Bau Luong
    Perez, Francisco E. Hernandez
    Im, Hong G.
    Keyes, David
    EURO-PAR 2022: PARALLEL PROCESSING, 2022, 13440 : 403 - 418
  • [9] High-Performance Cloud Computing: A View of Scientific Applications
    Vecchiola, Christian
    Pandey, Suraj
    Buyya, Rajkumar
    2009 10TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS, AND NETWORKS (ISPAN 2009), 2009, : 4 - 16
  • [10] QoS support for high-performance scientific Grid applications
    Al-Ali, R
    von Laszewski, G
    Amin, K
    Hategan, M
    Rana, O
    Walker, D
    Zaluzec, N
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID - CCGRID 2004, 2004, : 134 - 143