The guiding center approximation for the 2D Vlasov-Poisson equation

被引:2
|
作者
Golse, F
Saint-Raymond, L
机构
[1] Univ Paris 07, F-75230 Paris 05, France
[2] Ecole Normale Super, DMI, F-75230 Paris, France
关键词
D O I
10.1016/S0764-4442(99)80034-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the plane motion of a gas of charged particles subject to the self-consistent electric field and to a constant external magnetic field orthogonal to the plane of motion. As the intensity of the magnetic field tends to infinity, the asymptotic behavior, in the long time limit, of the average density of particles obeys the vorticity formulation of the 2D incompressible Euler equation. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:865 / 870
页数:6
相关论文
共 50 条
  • [1] CONVERGENCE OF GALERKIN APPROXIMATION FOR 2-DIMENSIONAL VLASOV-POISSON EQUATION
    PULVIRENTI, M
    WICK, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1984, 35 (06): : 790 - 801
  • [2] The gyrokinetic approximation for the Vlasov-Poisson system
    Saint-Raymond, L
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (09): : 1305 - 1332
  • [3] Sparse Grids for the Vlasov-Poisson Equation
    Kormann, Katharina
    Sonnendruecker, Eric
    SPARSE GRIDS AND APPLICATIONS - STUTTGART 2014, 2016, 109 : 163 - 190
  • [4] Fluctuations and control in the Vlasov-Poisson equation
    Lima, Ricardo
    Mendes, R. Vilela
    PHYSICS LETTERS A, 2007, 368 (1-2) : 87 - 91
  • [5] Vlasov-Poisson Equation in Besov Space
    He, Cong
    Chen, Jingchun
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, : 1003 - 1028
  • [6] On the approximation of the Vlasov-Poisson system by particle methods
    Wollman, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) : 1369 - 1398
  • [7] Approximation technique for solving the Vlasov-Poisson problem
    Parsa, Z
    Zadorozhny, V
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 558 (01): : 311 - 313
  • [8] An interpolating particle method for the Vlasov-Poisson equation
    Wilhelm, R. Paul
    Kirchhart, Matthias
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473
  • [9] STREAMLINE DIFFUSION METHODS FOR THE VLASOV-POISSON EQUATION
    ASADZADEH, M
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (02): : 177 - 196