Multiaxial high-cycle fatigue life prediction model based on the critical plane approach considering mean stress effects

被引:22
|
作者
Zhang, Jia-Liang [1 ]
Shang, De-Guang [1 ]
Sun, Yu-Juan [1 ]
Wang, Xiao-Wei [1 ]
机构
[1] Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiaxial fatigue; high-cycle fatigue; critical plane; mean stress; life prediction; HCF CRITERIA; DAMAGE; DIRECTIONS; COMPONENTS; DUCTILE;
D O I
10.1177/1056789516659331
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this paper is to propose a modified multiaxial high-cycle fatigue criterion based on the critical plane approach. The proposed criterion contains three parameters, that is, shear stress amplitude, normal stress amplitude and mean normal stress. In order to take into account the mean shear stress effects, the critical plane is determined by the maximum shear stress. In the proposed multiaxial fatigue criterion, the influence of mean normal stress on fatigue damage is also considered. Based on the proposed criterion, the multiaxial fatigue life is predicted, and the results showed a good agreement with experimental data obtained from some literatures.
引用
收藏
页码:32 / 46
页数:15
相关论文
共 50 条
  • [1] A sectional critical plane model for multiaxial high-cycle fatigue life prediction
    Qi, Xinxin
    Liu, Tianqi
    Shi, Xinhong
    Wang, Jiaying
    Zhang, Jianyu
    Fei, Binjun
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (03) : 689 - 704
  • [2] Multiaxial high-cycle fatigue failure and life prediction based on critical plane method
    Wang, Yang
    Sun, Guo-Qin
    Liu, Jinfeng
    Liu, Xiaodong
    Shang, Deguang
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2022, 31 (08) : 1165 - 1186
  • [3] A Critical Plane-Based Multiaxial High-Cycle Fatigue Criterion Considering Mean Stress and Phase Shift Effects for Hard Metals
    Wang, Xiaowei
    Hou, Jun
    Shen, Qin
    Li, Fangjie
    Liu, Min
    Sun, Yujuan
    Teng, Bing
    JOURNAL OF TESTING AND EVALUATION, 2023, 51 (06) : 3611 - 3633
  • [4] An improved multiaxial high-cycle fatigue criterion based on critical plane approach
    Zhang, Cheng-Cheng
    Yao, Wei-Xing
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2011, 34 (05) : 337 - 344
  • [5] A new model for life prediction of multiaxial high-cycle fatigue
    Zhang, Chengcheng
    Yao, Weixing
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2010, 42 (06): : 1225 - 1230
  • [6] Multiaxial high-cycle fatigue life prediction model considering mean shear stress effect under constant and variable amplitude loading
    Wang, Xiao-Wei
    Shang, De-Guang
    Sun, Yu-Juan
    Chen, Hong
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2018, 96 : 676 - 687
  • [7] An improved critical plane-energy multiaxial fatigue life prediction model considering shear mean stress
    Jie Zhou
    Zhengchao Tan
    Linwei Cao
    Yuexing Wang
    Journal of Mechanical Science and Technology, 2023, 37 : 2333 - 2341
  • [8] An improved critical plane-energy multiaxial fatigue life prediction model considering shear mean stress
    Zhou, Jie
    Tan, Zhengchao
    Cao, Linwei
    Wang, Yuexing
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (05) : 2333 - 2341
  • [9] A numerical approach for high-cycle fatigue life prediction with multiaxial loading
    De, Freitas, M.
    Li, B.
    Santos, J.L.T.
    ASTM Special Technical Publication, 2000, (1387): : 139 - 156
  • [10] A numerical approach for high-cycle fatigue life prediction with multiaxial loading
    de Freitas, M
    Li, B
    Santos, JLT
    MULTIAXIAL FATIGUE AND DEFORMATION: TESTING AND PREDICTION, 2000, 1387 : 139 - 156