Determination of geometrically necessary dislocations in large shear strain localization in aluminum

被引:86
|
作者
Zhu, Chaoyi [1 ]
Harrington, Tyler [1 ]
Livescu, Veronica [2 ]
Gray, George T., III [2 ]
Vecchio, Kenneth S. [1 ]
机构
[1] Univ Calif San Diego, Dept NanoEngn, San Diego, CA 92131 USA
[2] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA
关键词
Geometrically-necessary dislocations; Shear bands; Electron backscattered diffraction; Morphological anisotropy; 316L STAINLESS-STEEL; PLASTIC-DEFORMATION; MICROSTRUCTURAL EVOLUTION; FAILURE; EBSD; DIFFRACTION; TEXTURE; TITANIUM; DENSITY; BANDS;
D O I
10.1016/j.actamat.2016.07.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a systematic approach is presented to quantifying shear band evolution by quantifying geometrically necessary dislocations (GND) associated with morphological anisotropy in 7039-aluminum alloy using the compact forced-simple shear (CFSS) design. A statistically motivated approach, i.e. the line averaged GND density profile, has been developed to investigate the GND density near heavily deformed, shear band regions. Our study shows that: i) line average GND density profiles for the Al samples machined in the A-direction (transverse to pancake-shaped grains), B-direction (parallel to longitudinal pancake-shaped grains, shearing in through-thickness direction), C-direction (parallel to pancake-shaped grains, shearing in the in-plane direction) and D-direction (parallel and through the pancake-shaped grains) are nominally similar; ii) apart from 7039-aluminum alloy C-direction that has a uniform GND distribution in the direction normal to shear due to a grain-sliding mechanism, GND profiles for other samples decrease steadily away from the shear band as plastic strain diminishes, in agreement with Ashby's theory of work hardening, iii) anisotropy in damage evolution and shear-stress shear-strain response of 7039-aluminum alloy is associated with the grain structure of the material, i.e. morphological anisotropy creating variations in grain boundary interactions; iv) microbands formation in D-direction is associated with local GND peaks; v) stress-relief crack propagating along grain boundaries due to the presence of voids or inclusions generates a 'shielding effect' on neighboring grains; and vi) the line average GND density profile within a single grain usually varies inversely with the width of the grain for A-, B- and D-directions, leading to generally pronounced higher GND density near triple junctions. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 50 条