Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes

被引:154
|
作者
Cristino, Vito [1 ]
Caramori, Stefano [1 ]
Argazzi, Roberto [2 ]
Meda, Laura [3 ]
Marra, Gian Luigi [3 ]
Bignozzi, Carlo Alberto [1 ]
机构
[1] Univ Ferrara, Dipartmento Chim, I-44121 Ferrara, Italy
[2] Univ Ferrara, Dipartmento Chim, ISOF CNR, I-44121 Ferrara, Italy
[3] Ist ENI Donegani, I-28100 Novara, Italy
关键词
TIO2 NANOTUBE ARRAYS; SOLAR; SEMICONDUCTOR; OXIDATION; FILMS; PHOTOANODES; CHEMISTRY; BEHAVIOR; ELEMENT;
D O I
10.1021/la200595x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The potentiostatic anodization of metallic tungsten has been investigated in different solvent/electrolyte compositions with the aim of improving the water oxidation ability of the tungsten oxide layer. In the NMF/H2O/NH4F solvent mixture, the anodization leads to highly efficient WO3 photoanodes, which, combining spectral sensitivity, an electrochemically active surface, and improved charge-transfer kinetics, outperform, under simulated solar illumination, most of the reported nanocrystalline substrates produced by anodization in aqueous electrolytes and by sol gel methods. The use of such electrodes results in high water electrolysis yields of between 70 and 90% in 1 M H2SO4 under a potential bias of 1 V versus SCE and close to 100% in the presence of methanol.
引用
收藏
页码:7276 / 7284
页数:9
相关论文
共 50 条
  • [1] Efficient Anodically Grown WO3 for Photoelectrochemical Water Splitting
    Caramori, S.
    Cristino, V.
    Meda, L.
    Tacca, A.
    Argazzi, R.
    Bignozzi, C. A.
    EMRS SYMPOSIUM T: MATERIALS FOR SOLAR HYDROGEN VIA PHOTO-ELECTROCHEMICAL PRODUCTION, 2012, 22 : 127 - 136
  • [2] Synthesis and characterization of WO3 photoanodes for efficient photoelectrochemical water splitting
    Zheng, Guangwei
    Jiang, Shukang
    Zhang, Fengqing
    Yu, Hongwen
    Zhang, Yanli L.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2025, 131 (01):
  • [3] Tailoring surface states in WO3 photoanodes for efficient photoelectrochemical water splitting
    Singh, Trilok
    Mueller, Ralf
    Singh, Jai
    Mathur, Sanjay
    APPLIED SURFACE SCIENCE, 2015, 347 : 448 - 453
  • [4] Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting
    Zheng, Guangwei
    Wang, Jinshu
    Zu, Guannan
    Che, Haibing
    Lai, Chen
    Li, Hongyi
    Murugadoss, Vignesh
    Yan, Chao
    Fan, Jincheng
    Guo, Zhanhu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (45) : 26077 - 26088
  • [5] Multilayered WO3 Nanoplatelets for Efficient Photoelectrochemical Water Splitting: The Role of the Annealing Ramp
    Apolinario, Arlete
    Lopes, Tania
    Costa, Claudia
    Araujo, Joao P.
    Mendes, Adelio M.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (02): : 1040 - 1050
  • [6] WO3/Conducting Polymer Heterojunction Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting
    Jeon, Dasom
    Kim, Nayeong
    Bae, Sanghyun
    Han, Yujin
    Ryu, Jungki
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (09) : 8036 - 8044
  • [7] Nanostructured WO3/BiVO4 Photoanodes for Efficient Photoelectrochemical Water Splitting
    Pihosh, Yuriy
    Turkevych, Ivan
    Mawatari, Kazuma
    Asai, Tomohiro
    Hisatomi, Takashi
    Uemura, Jin
    Tosa, Masahiro
    Shimamura, Kiyoshi
    Kubota, Jun
    Domen, Kazunari
    Kitamori, Takehiko
    SMALL, 2014, 10 (18) : 3692 - 3699
  • [8] Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting
    Rao, Pratap M.
    Cho, In Sun
    Zheng, Xiaolin
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 2187 - 2195
  • [9] WO3 nanocubes for photoelectrochemical water-splitting applications
    Rani, B. Jansi
    Kumar, M. Praveen
    Ravichandran, S.
    Ravi, G.
    Ganesh, V
    Guduru, Ramesh K.
    Yuvakkumar, R.
    Hong, S., I
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 134 : 149 - 156
  • [10] Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting
    Su, Jinzhan
    Guo, Liejin
    Bao, Ningzhong
    Grimes, Craig A.
    NANO LETTERS, 2011, 11 (05) : 1928 - 1933