Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope

被引:12
|
作者
da Fonseca, C. M. [1 ]
de Sa, E. Marques [1 ]
机构
[1] Univ Coimbra, Dept Matemat, P-3001454 Coimbra, Portugal
关键词
doubly stochastic matrix; birkhoff polytope; tridiagonal matrix; number of vertices; faces;
D O I
10.1016/j.disc.2007.03.077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1308 / 1318
页数:11
相关论文
共 50 条