TWO-WEIGHT INEQUALITIES FOR GEOMETRIC MAXIMAL OPERATORS

被引:0
|
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
来源
关键词
Maximal; dyadic; Bellman function; best constants; BELLMAN FUNCTIONS; WEIGHTED INEQUALITIES;
D O I
10.7153/mia-2017-20-72
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study one- and two-weight inequalities for the geometric maximal operator on probability spaces equipped with a tree-like structure. We provide a characterization of weights, in terms of Muckenhoupt and Sawyer-type conditions, for which the appropriate strong-type estimates hold. Our approach rests on Bellman function method, which allows us to identify sharp constants involved in the estimates.
引用
收藏
页码:1121 / 1138
页数:18
相关论文
共 50 条
  • [1] Two-weight inequalities for multilinear maximal operators
    Li, Wenming
    Xue, Limei
    Yan, Xuefang
    GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (01) : 145 - 156
  • [2] TWO-WEIGHT NORM INEQUALITIES FOR POTENTIAL TYPE AND MAXIMAL OPERATORS IN A METRIC SPACE
    Kairema, Anna
    PUBLICACIONS MATEMATIQUES, 2013, 57 (01) : 3 - 56
  • [3] Two-weight norm inequalities for fractional maximal operators on spaces of generalized homogeneous type
    Trujillo-González R.
    Periodica Mathematica Hungarica, 2002, 44 (1) : 101 - 110
  • [4] Two-Weight Norm Inequalities for the Local Maximal Function
    Ramseyer, M.
    Salinas, O.
    Viviani, B.
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 120 - 141
  • [5] Two-Weight Norm Inequalities for the Local Maximal Function
    M. Ramseyer
    O. Salinas
    B. Viviani
    The Journal of Geometric Analysis, 2017, 27 : 120 - 141
  • [6] Two-weight inequalities for convolution operators in Lebesgue space
    Bandaliev, R. A.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 3 - 10
  • [7] On Two-Weight Norm Inequalities for Positive Dyadic Operators
    Hanninen, Timo S.
    Verbitsky, Igor E.
    POTENTIAL ANALYSIS, 2021, 55 (02) : 229 - 249
  • [8] Two-weight inequalities for convolution operators in Lebesgue space
    R. A. Bandaliev
    Mathematical Notes, 2006, 80 : 3 - 10
  • [9] Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces
    García-Cuerva, J
    Martell, JM
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 (03) : 1241 - 1280
  • [10] On Two-Weight Norm Inequalities for Positive Dyadic Operators
    Timo S. Hänninen
    Igor E. Verbitsky
    Potential Analysis, 2021, 55 : 229 - 249