ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS

被引:0
|
作者
Solovyov, S. A. [1 ,2 ]
机构
[1] Univ Latvia, Dept Math, LV-1002 Riga, Latvia
[2] Univ Latvia, Inst Math & Comp Sci, LV-1459 Riga, Latvia
来源
IRANIAN JOURNAL OF FUZZY SYSTEMS | 2011年 / 8卷 / 05期
关键词
Algebra; (Co)algebraic category; (Co)reflective subcategory; Lattice-valued topology; Powerset operator; S-quantale; Topological category; Topological system; Variety; CHAIN-VALUED FRAMES; THEORETIC ASPECTS; FOUNDATIONS; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the recent study on categorical properties of lattice-valued topology, the paper considers a generalization of the notion of topological system introduced by S. Tickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category TopSys of S. Vickers gets clarified, and a metatheorem is stated, claiming that (lattice-valued) topology can be embedded into algebra.
引用
收藏
页码:13 / 30
页数:18
相关论文
共 50 条