Existence of positive periodic solutions of nonlinear first-order delayed differential equations

被引:38
|
作者
Ma, Ruyun [1 ]
Chen, Ruipeng [1 ]
Chen, Tianlan [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
Positive omega-periodic solutions; Existence; Fixed point index; Cones; SYSTEMS;
D O I
10.1016/j.jmaa.2011.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of positive omega-periodic solutions for the equation u'(t) = a(t)g(u(t))u(t) - lambda b(t)f (u(t -tau(t))), where a, b is an element of C(R, [0, infinity)) are omega-periodic functions with integral(omega)(0)a(t) dt > 0, integral(omega)(0)b(t) dt > 0; f, g is an element of C([0, infinity). [0, infinity)) and f (s) > 0 for s > 0; tau is a continuous omega-periodic function; lambda > 0 is a parameter. The proofs of our main results are based upon fixed point index theory. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:527 / 535
页数:9
相关论文
共 50 条