Cross-modality Attention Method for Medical Image Enhancement

被引:0
|
作者
Hu, Zebin [1 ]
Liu, Hao [1 ,2 ]
Li, Zhendong [1 ,2 ]
Yu, Zekuan [3 ]
机构
[1] Ningxia Univ, Sch Informat Engn, Yinchuan 750021, Ningxia, Peoples R China
[2] Collaborat Innovat Ctr Ningxia Big Data & Artific, Yinchuan 750021, Ningxia, Peoples R China
[3] Fudan Univ, Acad Engn & Technol, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
Cross-modality learning; Generative adversarial model; Self-attention; Medical imaging; MRI;
D O I
10.1007/978-3-030-88010-1_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a cross-modality attention method (CMAM) for medical image enhancement especially in magnetic resonance imaging, which typically addresses the issue of exploiting the clean feature by generative model. To realize this goal, we distill the complementary information directly from different modalities of raw input images for reliable image generation. More specifically, our method integrates local features with exploiting the semantic high-order dependencies and thus explores attentional fields for robust feature representation learning. To evaluate the effectiveness of our CMAM, we conduct folds of experiments on the standard benchmark Brats 2019 dataset and experimental results demonstrate the effectiveness of CMAM.
引用
收藏
页码:411 / 423
页数:13
相关论文
共 50 条
  • [1] Review of Cross-Modality Medical Image Prediction
    Zhou P.
    Chen H.-J.
    Yu Z.-K.
    Peng Y.-H.
    Li Y.-F.
    Yang F.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (01): : 220 - 226
  • [2] Cross-Modality Medical Image Retrieval with Deep Features
    Mbilinyi, Ashery
    Schuldt, Heiko
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2632 - 2639
  • [3] Cross-Modality Fourier Feature for Medical Image Synthesis
    Ma, Mei
    Lin, Ling
    Wang, Heng
    Li, Zhendong
    Liu, Hao
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1475 - 1480
  • [4] Correlative techniques for cross-modality medical image registration
    Richardson, DB
    Bury, EA
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 368 - 375
  • [5] From CNNs to GANs for cross-modality medical image estimation
    Fard, Azin Shokraei
    Reutens, David C.
    Vegh, Viktor
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [6] Boosting Cross-Modality Image Registration
    Barbu, Adrian
    Ionasec, Razvan
    2009 JOINT URBAN REMOTE SENSING EVENT, VOLS 1-3, 2009, : 89 - +
  • [7] Unpaired Cross-Modality Educed Distillation (CMEDL) for Medical Image Segmentation
    Jiang, Jue
    Rimner, Andreas
    Deasy, Joseph O.
    Veeraraghavan, Harini
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (05) : 1057 - 1068
  • [8] Deep Symmetric Adaptation Network for Cross-Modality Medical Image Segmentation
    Han, Xiaoting
    Qi, Lei
    Yu, Qian
    Zhou, Ziqi
    Zheng, Yefeng
    Shi, Yinghuan
    Gao, Yang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (01) : 121 - 132
  • [9] Self-attention Cross-modality Fusion Network for Cross-modality Person Re-identification
    Du P.
    Song Y.-H.
    Zhang X.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (06): : 1457 - 1468
  • [10] Cross-modality optical coherence tomography image enhancement using deep learning
    Bellemo, Valentina
    Kumar, Ankit
    Wong, Damon
    Chua, Jacqueline
    Xu, Xinxing
    Liu, Xinyu
    Yong, Liu
    Schmetterer, Leopold
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)