A novel intelligent weight decreasing firefly-particle filtering method for accurate state-of-charge estimation of lithium-ion batteries

被引:9
|
作者
Qiao, Jialu [1 ]
Wang, Shunli [1 ]
Yu, Chunmei [1 ]
Yang, Xiao [1 ]
Fernandez, Carlos [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Robert Gordon Univ, Sch Pharm & Life Sci, Aberdeen, Scotland
基金
中国国家自然科学基金;
关键词
intelligent weight decreasing firefly; lithium-ion battery; particle filtering; second-order RC equivalent circuit model; state-of-charge; JOINT ESTIMATION; KALMAN FILTER; PARAMETERS; MODEL;
D O I
10.1002/er.7596
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-charge estimation plays an extremely crucial role in battery management systems. To realize the real-time and precise state-of-charge estimation, an intelligent weight decreasing firefly-particle filtering algorithm is proposed. In this research, the second-order RC equivalent circuit model is established, and the parameters are identified online, and state-of-charge particles simulate the attraction behavior of fireflies in nature and approach the global optimal value to complete the particle optimization process. The linear weight decreasing strategy is introduced to avoid the algorithm falling into local optimization. The data of different complex conditions are used to verify the feasibility of the proposed algorithm; the results show that the root-mean-square error of intelligent weight decreasing firefly-particle filtering method when the initial SOC value is set to 1 under Hybrid Pulse Power Characterization and Beijing Bus Dynamic Stress Test condition can be controlled within 0.60% and 1.12%, respectively, which verifies that the proposed algorithm has high accuracy in state-of-charge estimation of lithium-ion batteries. The algorithm proposed in this article provides a theoretical basis for real-time state monitoring and security of battery management systems.
引用
收藏
页码:6613 / 6622
页数:10
相关论文
共 50 条
  • [1] A Novel Square-Root Adaptive Unscented Kalman Filtering Method for Accurate State-of-Charge Estimation of Lithium-ion Batteries
    Wang, Shunli
    Gao, Haiying
    Qiao, Jialu
    Cao, Jie
    Fernandez, Carlos
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [2] An improved adaptive spherical unscented Kalman filtering method for the accurate state-of-charge estimation of lithium-ion batteries
    Qi, Chuangshi
    Wang, Shunli
    Cao, Wen
    Yu, Peng
    Xie, Yanxin
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (10) : 3487 - 3502
  • [3] A Novel High-Fidelity Unscented Particle Filtering Method for the Accurate State of Charge Estimation of Lithium-Ion Batteries
    Xie, Yanxin
    Wang, Shunli
    Fernandez, Carlos
    Yu, Chunmei
    Fan, Yongcun
    Cao, Wen
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (06): : 1 - 22
  • [4] State-of-charge estimation in lithium-ion batteries: A particle filter approach
    Tulsyan, Aditya
    Tsai, Yiting
    Gopaluni, R. Bhushan
    Braatz, Richard D.
    JOURNAL OF POWER SOURCES, 2016, 331 : 208 - 223
  • [5] A Lithium-Ion Batteries Fault Diagnosis Method for Accurate Coulomb Counting State-of-Charge Estimation
    Cong-Sheng Huang
    Journal of Electrical Engineering & Technology, 2024, 19 : 433 - 442
  • [6] A Lithium-Ion Batteries Fault Diagnosis Method for Accurate Coulomb Counting State-of-Charge Estimation
    Huang, Cong-Sheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 19 (01) : 433 - 442
  • [7] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [8] An intelligent fusion estimation method for state of charge estimation of lithium-ion batteries
    Cheng, Xingqun
    Liu, Xiaolong
    Li, Xinxin
    Yu, Quanqing
    ENERGY, 2024, 286
  • [9] State-of-charge estimation of lithium-ion batteries based on multiple filters method
    Wang, Yujie
    Zhang, Chenbin
    Chen, Zonghai
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2635 - 2640
  • [10] A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries
    Liu, Xintian
    Deng, Xuhui
    He, Yao
    Zheng, Xinxin
    Zeng, Guojian
    ENERGIES, 2020, 13 (01)