A Clustering-based Collaborative Filtering Approach for Mashups Recommendation over Big Data

被引:2
|
作者
Hu, Rong [1 ]
Dou, Wanchun [1 ]
Liu, Jianxun [2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210008, Jiangsu, Peoples R China
[2] Hunan Univ Sci & Tec, Key Lab Knowledge Proc & Networked Mfg, Xiangtan, Hunan, Peoples R China
关键词
clustering; collaborative filtering; mashup; API; tag;
D O I
10.1109/CSE.2013.123
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Spurred by services computing and Web 2.0, more and more mashups are emerging on the Internet. The overwhelming mashups become too large to be effectively recommended by traditional methods. In view of this challenge, we propose a clustering-based collaborative filtering approach for mashup recommendation over big data. This approach mainly divided into two phases: clustering and collaborative filtering. By using clustering techniques, the data size is reduced so that the computation time of collaborative filtering algorithm is decreased significantly. Several experiments are done to verify the efficient of the proposed approach at the end of this paper.
引用
收藏
页码:810 / 817
页数:8
相关论文
共 50 条
  • [1] ClubCF: A Clustering-Based Collaborative Filtering Approach for Big Data Application
    Hu, Rong
    Dou, Wanchun
    Liu, Jianxun
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2014, 2 (03) : 302 - 313
  • [2] An improved clustering-based collaborative filtering recommendation algorithm
    Liu Xiaojun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (02): : 1281 - 1288
  • [3] An improved clustering-based collaborative filtering recommendation algorithm
    Liu Xiaojun
    Cluster Computing, 2017, 20 : 1281 - 1288
  • [4] Collaborative filtering-based recommendation system for big data
    Shen, Jian
    Zhou, Tianqi
    Chen, Lina
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (02) : 219 - 225
  • [5] A clustering based approach to improving the efficiency of collaborative filtering recommendation
    Liao, Chih-Lun
    Lee, Shie-Jue
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2016, 18 : 1 - 9
  • [6] Multidimensional Clustering Based Collaborative Filtering Approach for Diversified Recommendation
    Li, Xiaohui
    Murata, Tomohiro
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 905 - 910
  • [7] User Attributes Clustering-Based Collaborative Filtering Recommendation Algorithm and Its Parallelization on Spark
    Wang, Zhongjie
    Yu, Nana
    Wang, Jiaxian
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 442 - 451
  • [8] A hybrid method using multidimensional clustering-based collaborative filtering to improve recommendation diversity
    Li, Xiaohui
    Murata, Tomohiro
    IEEJ Transactions on Electronics, Information and Systems, 2013, 133 (04) : 749 - 755
  • [9] Clustering-Based Collaborative Filtering for Link Prediction
    Wang, Xiangyu
    He, Dayu
    Chen, Danyang
    Xu, Jinhui
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 332 - 338
  • [10] Clustering-based collaborative filtering for link prediction
    Department of Computer Science and Engineering, State University of New York at Buffalo, United States
    Proc Natl Conf Artif Intell, (332-338):