ADAPTIVE VISUAL TARGET TRACKING BASED ON LABEL CONSISTENT K-SVD SPARSE CODING AND KERNEL PARTICLE FILTER

被引:0
|
作者
Yang, Jinlong [1 ]
Chen, Xiaoping [1 ]
Hu, Yu Hen [2 ]
Liu, Jianjun [1 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Wuxi 214122, Peoples R China
[2] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Visual target tracking; label consistent K-SVD; sparse coding; dictionary learning; particle filter; DISCRIMINATIVE DICTIONARY; OBJECT TRACKING;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose an adaptive visual target tracking algorithm based on Label-Consistent K-Singular Value Decomposition (LC-KSVD) dictionary learning. To construct target templates, local patch features are sampled from foreground and background of the target. LC-KSVD then is applied to these local patches to simultaneously estimate a set of low-dimension dictionary and classification parameters (CP). To track the target over time, a kernel particle filter (KPF) is proposed that integrates both local and global motion information of the target. An adaptive template updating scheme is also developed to improve the robustness of the tracker. Experimental results demonstrate superior performance of the proposed algorithm over state-of-art visual target tracking algorithms in scenarios that include occlusion, background clutter, illumination change, target rotation and scale changes.
引用
收藏
页码:1633 / 1637
页数:5
相关论文
共 50 条
  • [1] Learning A Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD
    Jiang, Zhuolin
    Lin, Zhe
    Davis, Larry S.
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1697 - 1704
  • [2] Label Consistent K-SVD for Sparse Micro-Doppler Classification
    Coutts, Fraser K.
    Gaglione, Domenico
    Clemente, Carmine
    Li, Gang
    Proudler, Ian K.
    Soraghan, John J.
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 90 - 94
  • [3] Robust Locality-Constrained Label Consistent K-SVD by Joint Sparse Embedding
    Zhang, Zhao
    Jiang, Weiming
    Li, Sheng
    Qin, Jie
    Liu, Guangcan
    Yan, Shuicheng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1664 - 1669
  • [4] Adaptive visual target tracking algorithm based on classified-patch kernel particle filter
    Zhang, Guangnan
    Yang, Jinlong
    Wang, Weixing
    Hu, Yu Hen
    Liu, Jianjun
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019, 2019 (1)
  • [5] Adaptive visual target tracking algorithm based on classified-patch kernel particle filter
    Guangnan Zhang
    Jinlong Yang
    Weixing Wang
    Yu Hen Hu
    Jianjun Liu
    EURASIP Journal on Image and Video Processing, 2019
  • [6] JOINT KERNEL DICTIONARY AND CLASSIFIER LEARNING FOR SPARSE CODING VIA LOCALITY PRESERVING K-SVD
    Liu, Weiyang
    Yu, Zhiding
    Yang, Meng
    Lu, Lijia
    Zou, Yuexian
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2015,
  • [7] SPEECH ENHANCEMENT BASED ON LABEL CONSISTENT K-SVD UNDER NOISY ENVIRONMENT
    Hsieh, Ching-Tang
    Chiang, Cheng-Yuan
    Chen, Ting-Wen
    PROCEEDINGS OF THE 2016 6TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS, ENVIRONMENT, BIOTECHNOLOGY AND COMPUTER (MMEBC), 2016, 88 : 524 - 528
  • [8] Arrhythmia detection based on the reduced features with K-SVD sparse coding algorithm
    Fatemeh Shahsavani
    Reza Nasiripour
    Reza Shakeri
    Alireza Gholamrezaee
    Multimedia Tools and Applications, 2023, 82 : 12337 - 12350
  • [9] Arrhythmia detection based on the reduced features with K-SVD sparse coding algorithm
    Shahsavani, Fatemeh
    Nasiripour, Reza
    Shakeri, Reza
    Gholamrezaee, Alireza
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (08) : 12337 - 12350
  • [10] Multifeature-Based Discriminative Label Consistent K-SVD for Hyperspectral Image Classification
    Ma, Yong
    Zhang, Yuanshu
    Mei, Xiaoguang
    Dai, Xiaobing
    Ma, Jiayi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4995 - 5008