Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods

被引:15
|
作者
Biryukov, V. A. [1 ]
Miryakha, V. A. [1 ]
Petrov, I. B. [1 ]
Khokhlov, N. I. [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Skii Per 9, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯科学基金会;
关键词
grid-characteristic method; discontinuous Galerkin method; seismic exploration problems; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT; SEISMIC-WAVES; DIFFERENCE; MESHES;
D O I
10.1134/S0965542516060087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For wave propagation in heterogeneous media, we compare numerical results produced by grid-characteristic methods on structured rectangular and unstructured triangular meshes and by a discontinuous Galerkin method on unstructured triangular meshes as applied to the linear system of elasticity equations in the context of direct seismic exploration with an anticlinal trap model. It is shown that the resulting synthetic seismograms are in reasonable quantitative agreement. The grid-characteristic method on structured meshes requires more nodes for approximating curved boundaries, but it has a higher computation speed, which makes it preferable for the given class of problems.
引用
收藏
页码:1086 / 1095
页数:10
相关论文
共 50 条
  • [1] Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods
    V. A. Biryukov
    V. A. Miryakha
    I. B. Petrov
    N. I. Khokhlov
    Computational Mathematics and Mathematical Physics, 2016, 56 : 1086 - 1095
  • [2] Numerical simulation of elastic wave propagation in anisotropic media
    Zhang, JF
    Liu, TL
    ACTA MECHANICA SOLIDA SINICA, 2000, 13 (01) : 50 - 59
  • [3] NUMERICAL SIMULATION OF ELASTIC WAVE PROPAGATION IN ANISOTROPIC MEDIA
    Zhang Jianfeng Liu Tielin (State Key Laboratory of Structure Analysis of Industrial Equipment
    Acta Mechanica Solida Sinica, 2000, 13 (01) : 50 - 59
  • [4] Numerical simulation of elastic wave propagation in inhomogeneous media
    Zhang, JF
    Li, YM
    WAVE MOTION, 1997, 25 (02) : 109 - 125
  • [5] Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media
    Berezovski, A
    Berezovski, M
    Engelbrecht, J
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 418 (1-2): : 364 - 369
  • [6] NUMERICAL-METHODS FOR WAVE-PROPAGATION IN ELASTIC AND ANELASTIC MEDIA
    GAUZELLINO, P
    SANTOS, JE
    MATEMATICA APLICADA E COMPUTACIONAL, 1993, 12 (02): : 95 - 111
  • [7] Numerical simulation of wave propagation in anisotropic media
    Petrov, I. B.
    Favorskaya, A. V.
    Vasyukov, A. V.
    Ermakov, A. S.
    Beklemysheva, K. A.
    Kazakov, A. O.
    Novikov, A. V.
    DOKLADY MATHEMATICS, 2014, 90 (03) : 778 - 780
  • [8] Numerical simulation of wave propagation in anisotropic media
    I. B. Petrov
    A. V. Favorskaya
    A. V. Vasyukov
    A. S. Ermakov
    K. A. Beklemysheva
    A. O. Kazakov
    A. V. Novikov
    Doklady Mathematics, 2014, 90 : 778 - 780
  • [9] Numerical Simulation of Wave Propagation in 3D Elastic Media with Viscoelastic Formations
    Vishnevsky, D. M.
    Solovyev, S. A.
    Lisitsa, V. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (08) : 1603 - 1614
  • [10] Numerical simulation of elastic wave propagation in isotropic media considering material and geometrical nonlinearities
    Rauter, N.
    Lammering, R.
    SMART MATERIALS AND STRUCTURES, 2015, 24 (04)