A determinant representation for a correlation function of the scaling Lee-Yang model

被引:7
|
作者
Korepin, VE [1 ]
Oota, T
机构
[1] SUNY Stony Brook, Inst Theoret Phys, Stony Brook, NY 11794 USA
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 60601, Japan
来源
关键词
D O I
10.1088/0305-4470/31/19/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the scaling Lee-Yang model. It corresponds to the unique perturbation of the minimal CFT model M-2,M-5. This model is not unitary. We are using an expression for form factors in terms of symmetric polynomials in order to obtain a closed expression for the correlation function of the trace of the energy-momentum tenser. This expression is a determinant of an integral operator. Similar determinant representations were proven to be useful not only for quantum correlation functions but also in matrix models.
引用
收藏
页码:L371 / L380
页数:10
相关论文
共 50 条
  • [1] Correlation functions of descendants in the scaling Lee-Yang model
    V. A. Belavin
    O. V. Miroshnichenko
    Journal of Experimental and Theoretical Physics Letters, 2005, 82 : 679 - 684
  • [2] Correlation functions of descendants in the scaling Lee-Yang model
    Belavin, VA
    Miroshnichenko, OV
    JETP LETTERS, 2005, 82 (11) : 679 - 684
  • [3] 2-POINT CORRELATION-FUNCTION IN SCALING LEE-YANG MODEL
    ZAMOLODCHIKOV, AB
    NUCLEAR PHYSICS B, 1991, 348 (03) : 619 - 641
  • [4] Scaling Lee-Yang model on a sphere 1. Partition function
    Zamolodchikov, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (07):
  • [5] TRUNCATED CONFORMAL SPACE APPROACH TO SCALING LEE-YANG MODEL
    YUROV, VP
    ZAMOLODCHIKOV, AB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (16): : 3221 - 3245
  • [6] Explicit boundary form factors: The scaling Lee-Yang model
    Hollo, L.
    Laczko, Z. B.
    Bajnok, Z.
    NUCLEAR PHYSICS B, 2014, 886 : 1029 - 1045
  • [7] CORRELATION INEQUALITIES AND THE LEE-YANG THEOREM
    NEWMAN, CM
    JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (01) : 189 - 190
  • [8] Lee-Yang zeros and two-time spin correlation function
    Gnatenko, Kh. P.
    Kargol, A.
    Tkachuk, V. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 1095 - 1101
  • [9] Defect scaling Lee-Yang model from the perturbed DCFT point of view
    Bajnok, Zoltan
    Hollo, Laszlo
    Watts, Gerard
    NUCLEAR PHYSICS B, 2014, 886 : 93 - 124
  • [10] LEE-YANG MEASURES
    SALMHOFER, M
    HELVETICA PHYSICA ACTA, 1994, 67 (03): : 257 - 288