RESULTS ON LOCAL COHOMOLOGY OF WEAKLY LASKERIAN MODULES

被引:4
|
作者
Zamani, Naser [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Sci, Ardebil, Iran
关键词
a-Weakly Laskerian modules; a-weakly cofinite; local cohomology; associated primes; PRIMES; COFINITENESS; SET;
D O I
10.1142/S0219498811004586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative Noetherian ring, a be an ideal of R and M be an arbitrary R-module. In this paper, among other things, we show that if, for a non-negative integer t, the R-module Ext(R)(t) (R/a, M) is weakly Laskerian and H-a(i) (M) is a-weakly cofinite for all i < t, then, for any weakly Laskerian submodule U of H-a(t) (M), the R-module Hom(R)(R/a, H-a(t) (M)/U) is weakly Laskerian. As a consequence the set of associated primes of H-a(t) (M)/U is finite.
引用
收藏
页码:303 / 308
页数:6
相关论文
共 50 条