Microbiome Data Enhances Predictive Models of Lung Function in People With Cystic Fibrosis

被引:8
|
作者
Zhao, Conan Y. [1 ,2 ,3 ,6 ]
Hao, Yiqi [2 ]
Wang, Yifei [2 ,3 ,4 ,6 ]
Varga, John J. [2 ,3 ,5 ,6 ]
Stecenko, Arlene A. [5 ,6 ]
Goldberg, Joanna B. [5 ,6 ]
Brown, Sam P. [2 ,3 ,6 ]
机构
[1] Georgia Inst Technol, Interdisciplinary Grad Program Quantitat Biosci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Ctr Microbial Dynam & Infect, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Inst Data Engn & Sci IDEaS, Atlanta, GA 30332 USA
[5] Emory Univ, Sch Med, Dept Pediat, Div Pulm Allergy Immunol Cyst Fibrosis & Sleep, Atlanta, GA USA
[6] Emory Childrens Ctr Cyst Fibrosis & Airway Dis Re, Atlanta, GA USA
来源
JOURNAL OF INFECTIOUS DISEASES | 2021年 / 223卷
基金
美国国家卫生研究院;
关键词
microbiome; machine learning; cystic fibrosis; AIRWAY MICROBIOTA; PATHOGENS;
D O I
10.1093/infdis/jiaa655
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background. Microbiome sequencing has brought increasing attention to the polymicrobial context of chronic infections. However, clinical microbiology continues to focus on canonical human pathogens, which may overlook informative, but nonpathogenic, biomarkers. We address this disconnect in lung infections in people with cystic fibrosis (CF). Methods. We collected health information (lung function, age, and body mass index [BMI]) and sputum samples from a cohort of 77 children and adults with CF. Samples were collected during a period of clinical stability and 16S rDNA sequenced for airway microbiome compositions. We use ElasticNet regularization to train linear models predicting lung function and extract the most informative features. Results. Models trained on whole-microbiome quantitation outperformed models trained on pathogen quantitation alone, with or without the inclusion of patient metadata. Our most accurate models retained key pathogens as negative predictors (Pseudomonas, Achromobacter) along with established correlates of CF disease state (age, BMI, CF-related diabetes). In addition, our models selected nonpathogen taxa (Fusobacterium, Rothia) as positive predictors of lung health. Conclusions. These results support a reconsideration of clinical microbiology pipelines to ensure the provision of informative data to guide clinical practice.
引用
收藏
页码:S246 / S256
页数:11
相关论文
共 50 条
  • [1] Changes in Microbiome Dominance Are Associated With Declining Lung Function and Fluctuating Inflammation in People With Cystic Fibrosis
    Frey, Dario L.
    Bridson, Calum
    Dittrich, Susanne
    Graeber, Simon Y.
    Stahl, Mirjam
    Wege, Sabine
    Herth, Felix
    Sommerburg, Olaf
    Schultz, Carsten
    Dalpke, Alexander
    Mall, Marcus A.
    Boutin, Sebastien
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [2] Lung Microbiome in Cystic Fibrosis
    Scialo, Filippo
    Amato, Felice
    Cernera, Gustavo
    Gelzo, Monica
    Zarrilli, Federica
    Comegna, Marika
    Pastore, Lucio
    Bianco, Andrea
    Castaldo, Giuseppe
    LIFE-BASEL, 2021, 11 (02): : 1 - 7
  • [3] Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline
    Bacci, Giovanni
    Paganin, Patrizia
    Lopez, Loredana
    Vanni, Chiara
    Dalmastri, Claudia
    Cantale, Cristina
    Daddiego, Loretta
    Perrotta, Gaetano
    Dolce, Daniela
    Morelli, Patrizia
    Tuccio, Vanessa
    De Alessandri, Alessandra
    Fiscarelli, Ersilia Vita
    Taccetti, Giovanni
    Lucidi, Vincenzina
    Bevivino, Annamaria
    Mengoni, Alessio
    PLOS ONE, 2016, 11 (06):
  • [4] Proton MRI assessment of lung structure and function in people with cystic fibrosis
    Brooke, Jonathan
    Safavi, Shahideh
    Prayle, Andrew P.
    Ng, Christabella
    Paul, Jan
    Bradley, Christopher
    Cooper, Andrew
    Munidasa, Samal
    Zanette, Brandon
    Santyr, Giles E.
    Barr, Helen
    Major, Giles
    Smyth, Alan
    Gowland, Penny
    Francis, Susan
    Hall, Ian P.
    EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [5] The effects of inhaled aztreonam on the cystic fibrosis lung microbiome
    Alya A. Heirali
    Matthew L. Workentine
    Nicole Acosta
    Ali Poonja
    Douglas G. Storey
    Ranjani Somayaji
    Harvey R. Rabin
    Fiona J. Whelan
    Michael G. Surette
    Michael D. Parkins
    Microbiome, 5
  • [6] The effects of inhaled aztreonam on the cystic fibrosis lung microbiome
    Heirali, Alya A.
    Workentine, Matthew L.
    Acosta, Nicole
    Poonja, Ali
    Storey, Douglas G.
    Somayaji, Ranjani
    Rabin, Harvey R.
    Whelan, Fiona J.
    Surette, Michael G.
    Parkins, Michael D.
    MICROBIOME, 2017, 5
  • [7] Nasal airway ion transport and lung function in young people with cystic fibrosis
    Wallace, HL
    Barker, PM
    Southern, KW
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2003, 168 (05) : 594 - 600
  • [8] Improvements of lung function in cystic fibrosis
    Tauber, E
    Eichler, L
    Gartner, C
    Halmerbauer, G
    Götz, M
    Rath, R
    Wojnarowski, C
    Frischer, T
    PEDIATRIC PULMONOLOGY, 2002, 33 (04) : 263 - 268
  • [9] LUNG FUNCTION PERCEPTION IN CYSTIC FIBROSIS
    Forno, E.
    Abraham, N.
    Winger, D.
    Kurland, G.
    Weiner, D. J.
    PEDIATRIC PULMONOLOGY, 2016, 51 : 359 - 360
  • [10] Rate of Lung Function Decline in People with Cystic Fibrosis Having a Residual Function Gene Mutation
    Gregory S. Sawicki
    Michael W. Konstan
    Edward F. McKone
    Richard B. Moss
    Barry Lubarsky
    Ellison Suthoff
    Stefanie J. Millar
    David J. Pasta
    Nicole Mayer-Hamblett
    Christopher H. Goss
    Wayne J. Morgan
    Margaret E. Duncan
    Yoojung Yang
    Pulmonary Therapy, 2022, 8 : 385 - 395