On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

被引:16
|
作者
Bekos, Michael A. [1 ]
Cornelsen, Sabine [2 ]
Grilli, Luca [3 ]
Hong, Seok-Hee [4 ]
Kaufmann, Michael [1 ]
机构
[1] Univ Tubingen, Wilhelm Schickard Inst Informat, Tubingen, Germany
[2] Univ Konstanz, Dept Comp & Informat Sci, Constance, Germany
[3] Univ Perugia, Dipartimento Ingn, Perugia, Italy
[4] Univ Sydney, Sch Informat Technol, Sydney, NSW, Australia
关键词
Fan-planar graphs; Beyond planarity; Graph drawing; RECTILINEAR DRAWINGS; NUMBER; 1-PLANARITY; CROSSINGS;
D O I
10.1007/s00453-016-0200-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a linear-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-complete, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given.
引用
收藏
页码:401 / 427
页数:27
相关论文
共 50 条
  • [1] On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs
    Michael A. Bekos
    Sabine Cornelsen
    Luca Grilli
    Seok-Hee Hong
    Michael Kaufmann
    Algorithmica, 2017, 79 : 401 - 427
  • [2] On the recognition of fan-planar and maximal outer-fan-planar graphs
    Bekos, Michael A., 1600, Springer Verlag (8871):
  • [3] On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs
    Bekos, Michael A.
    Cornelsen, Sabine
    Grilli, Luca
    Hong, Seok-Hee
    Kaufmann, Michael
    GRAPH DRAWING (GD 2014), 2014, 8871 : 198 - 209
  • [4] The Density of Fan-Planar Graphs
    Kaufmann, Michael
    Ueckerdt, Torsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [5] Weakly and Strongly Fan-Planar Graphs
    Cheong, Otfried
    Foerster, Henry
    Katheder, Julia
    Pfister, Maximilian
    Schlipf, Lena
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT I, 2023, 14465 : 53 - 68
  • [6] The Thickness of Fan-Planar Graphs is At Most Three
    Cheong, Otfried
    Pfister, Maximilian
    Schlipf, Lena
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 247 - 260
  • [7] Fan-Planar Graphs: Combinatorial Properties and Complexity Results
    Binucci, Carla
    Di Giacomo, Emilio
    Didimo, Walter
    Montecchiani, Fabrizio
    Patrignani, Maurizio
    Tollis, Ioannis G.
    GRAPH DRAWING (GD 2014), 2014, 8871 : 186 - 197
  • [8] Simplifying Non-Simple Fan-Planar Drawings
    Klemz B.
    Knorr K.
    Reddy M.M.
    Schröder F.
    Journal of Graph Algorithms and Applications, 2023, 27 (02) : 147 - 172
  • [9] A simple recognition of maximal planar graphs
    Nagamochi, H
    Suzuki, T
    Ishii, T
    INFORMATION PROCESSING LETTERS, 2004, 89 (05) : 223 - 226
  • [10] 1-Fan-bundle-planar drawings of graphs
    Angelini, Patrizio
    Bekos, Michael A.
    Kaufmann, Michael
    Kindermann, Philipp
    Schneck, Thomas
    THEORETICAL COMPUTER SCIENCE, 2018, 723 : 23 - 50