Wavelet/mixture of experts network structure for EEG signals classification

被引:90
|
作者
Uebeyli, Elif Derya [1 ]
机构
[1] TOBB Ekonomi Teknol Univ, Dept Elect & Comp Engn, Fac Engn, TR-06530 Ankara, Turkey
关键词
mixture of experts; expectation-maximization algorithm; classification accuracy; discrete wavelet transform; EEG signals classification;
D O I
10.1016/j.eswa.2007.02.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mixture of experts (ME) is a modular neural network architecture for supervised learning. This paper illustrates the use of ME network structure to guide model selection for classification of electroencephalogram (EEG) signals. Expectation-maximization (EM) algorithm was used for training the ME so that the learning process is decoupled in a manner that fits well with the modular structure. The EEG signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The ME network structure was implemented for classification of the EEG signals using the statistical features as inputs. To improve classification accuracy, the outputs of expert networks were combined by a gating network simultaneously trained in order to stochastically select the expert that is performing the best at solving the problem. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified with the accuracy of 93.17% by the ME network structure. The ME network structure achieved accuracy rates which were higher than that of the stand-alone neural network models. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1954 / 1962
页数:9
相关论文
共 50 条
  • [1] A mixture of experts network structure for EEG signals classification
    Guler, Inan
    Ubeyli, Elif Derya
    Guler, Nihal Fatma
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 2707 - 2710
  • [2] Modified mixture of experts for analysis of EEG signals
    Uebeyli, Elif Derya
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 1546 - 1549
  • [3] Classification Method of EEG Signals Based on Wavelet Neural Network
    Sun Hongyu
    Xiang Yang
    Guo Yinjing
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 2507 - +
  • [4] Study on Classification of EEG Signals Based on Wavelet Transformation and BP Neural Network
    Yu Zhulin
    Zhao Bing
    Liu Jie
    Yu Mingtao
    Xu Ling
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 285 - 289
  • [5] EEG Signals Classification and Diagnosis Using Wavelet Transform and Artificial Neural Network
    Chavan, Arun
    Kolte, Mahesh
    2017 INTERNATIONAL CONFERENCE ON NASCENT TECHNOLOGIES IN ENGINEERING (ICNTE-2017), 2017,
  • [6] Combined neural network model employing wavelet coefficients for EEG signals classification
    Ubeyli, Elif Derya
    DIGITAL SIGNAL PROCESSING, 2009, 19 (02) : 297 - 308
  • [7] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    SIGNAL PROCESSING, 1997, 59 (01) : 61 - 72
  • [8] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 89 - 92
  • [9] A mixture of experts network structure for modelling Doppler ultrasound blood flow signals
    Güler, I
    Übeyli, ED
    COMPUTERS IN BIOLOGY AND MEDICINE, 2005, 35 (07) : 565 - 582
  • [10] Mixture of Experts for EEG-Based Seizure Subtype Classification
    Du, Zhenbang
    Peng, Ruimin
    Liu, Wenzhong
    Li, Wei
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 4781 - 4789