Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding

被引:129
作者
Buchberger, A
Schroder, H
Hesterkamp, T
Schonfeld, HJ
Bukau, B
机构
[1] UNIV HEIDELBERG,ZENTRUM MOL BIOL,D-69120 HEIDELBERG,GERMANY
[2] F HOFFMANN LA ROCHE & CO LTD,PHARMACEUT RES,NEW TECHNOL,CH-4002 BASEL,SWITZERLAND
关键词
DnaJ; heat shock response; chaperonin; luciferase; E-coli;
D O I
10.1006/jmbi.1996.0465
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GroEL and DnaK with their cofactors constitute the major chaperone systems promoting protein folding in the Escherichia coli cytosol. The ability of GroEL to bind and promote folding of a substrate released from DnaK led to the proposal that the DnaK and GroEL systems act successively along a protein folding pathway. Here we have investigated the role of both systems in preventing aggregation and assisting refolding of firefly luciferase denatured by guanidinium chloride and heat. We find that DnaK and GroEL compete with each other for binding to non-native luciferase. Addition of ATP and co-operating proteins results in release of luciferase from either chaperone in a non-native conformation. Only a small fraction of luciferase molecules released from GroEL can reach the native state. Instead, the released luciferase must bind repeatedly to the DnaK system, and only then is it able to fold to the native state. Thus, during a folding reaction, DnaK and GroEL do not obligatorily act in succession by promoting earlier and later protein folding steps, respectively. Rather, the two chaperone systems and perhaps others can form a lateral network of co-operating proteins. This chaperone network is proposed to be of particular importance for the assisted refolding of proteins that are unfolded by stress treatment such as heat shock and whose size is too large to allow folding inside the substrate binding cavity of the GroEL ring underneath GroES. (C) 1996 Academic Press Limited.
引用
收藏
页码:328 / 333
页数:6
相关论文
共 32 条
[1]   PURIFICATION AND CHARACTERIZATION OF RECOMBINANT HUMAN P50(CSK) PROTEIN-TYROSINE KINASE FROM AN ESCHERICHIA-COLI EXPRESSION SYSTEM OVERPRODUCING THE BACTERIAL CHAPERONES GROES AND GROEL [J].
AMREIN, KE ;
TAKACS, B ;
STIEGER, M ;
MOLNOS, J ;
FLINT, NA ;
BURN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (04) :1048-1052
[2]   AFFINITY PANNING OF A LIBRARY OF PEPTIDES DISPLAYED ON BACTERIOPHAGES REVEALS THE BINDING-SPECIFICITY OF BIP [J].
BLONDELGUINDI, S ;
CWIRLA, SE ;
DOWER, WJ ;
LIPSHUTZ, RJ ;
SPRANG, SR ;
SAMBROOK, JF ;
GETHING, MJH .
CELL, 1993, 75 (04) :717-728
[3]   A CONSERVED LOOP IN THE ATPASE DOMAIN OF THE DNAK CHAPERONE IS ESSENTIAL FOR STABLE BINDING OF GRPE [J].
BUCHBERGER, A ;
SCHRODER, H ;
BUTTNER, M ;
VALENCIA, A ;
BUKAU, B .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (02) :95-101
[4]   THE CHAPERONE FUNCTION OF DNAK REQUIRES THE COUPLING OF ATPASE ACTIVITY WITH SUBSTRATE-BINDING THROUGH RESIDUE E171 [J].
BUCHBERGER, A ;
VALENCIA, A ;
MCMACKEN, R ;
SANDER, C ;
BUKAU, B .
EMBO JOURNAL, 1994, 13 (07) :1687-1695
[5]   GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION [J].
BUCHNER, J ;
SCHMIDT, M ;
FUCHS, M ;
JAENICKE, R ;
RUDOLPH, R ;
SCHMID, FX ;
KIEFHABER, T .
BIOCHEMISTRY, 1991, 30 (06) :1586-1591
[6]   IS HSP70 THE CELLULAR THERMOMETER [J].
CRAIG, EA ;
GROSS, CA .
TRENDS IN BIOCHEMICAL SCIENCES, 1991, 16 (04) :135-140
[7]   RESIDUES IN CHAPERONIN GROEL REQUIRED FOR POLYPEPTIDE BINDING AND RELEASE [J].
FENTON, WA ;
KASHI, Y ;
FURTAK, K ;
HORWICH, AL .
NATURE, 1994, 371 (6498) :614-619
[8]   PEPTIDE-BINDING SPECIFICITY OF THE MOLECULAR CHAPERONE BIP [J].
FLYNN, GC ;
POHL, J ;
FLOCCO, MT ;
ROTHMAN, JE .
NATURE, 1991, 353 (6346) :726-730
[9]  
FOURIE AM, 1994, J BIOL CHEM, V269, P30470
[10]   PHYSICAL INTERACTION BETWEEN HEAT-SHOCK PROTEINS DNAK, DNAJ, AND GRPE AND THE BACTERIAL HEAT-SHOCK TRANSCRIPTION FACTOR-SIGMA(32) [J].
GAMER, J ;
BUJARD, H ;
BUKAU, B .
CELL, 1992, 69 (05) :833-842