Entailment Graph Learning with Textual Entailment and Soft Transitivity

被引:0
|
作者
Chen, Zhibin [1 ,2 ,3 ]
Feng, Yansong [1 ,3 ]
Zhao, Dongyan [1 ,2 ,3 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
[2] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[3] Peking Univ, MOE Key Lab Computat Linguist, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typed entailment graphs try to learn the entailment relations between predicates from text and model them as edges between predicate nodes. The construction of entailment graphs usually suffers from severe sparsity and unreliability of distributional similarity. We propose a two-stage method, Entailment Graph with Textual Entailment and Transitivity (EGT2). EGT2 learns local entailment relations by recognizing possible textual entailment between template sentences formed by typed CCG-parsed predicates. Based on the generated local graph, EGT2 then uses three novel soft transitivity constraints to consider the logical transitivity in entailment structures. Experiments on benchmark datasets show that EGT2 can well model the transitivity in entailment graph to alleviate the sparsity issue, and lead to significant improvement over current state-of-the-art methods(1).
引用
收藏
页码:5899 / 5910
页数:12
相关论文
共 50 条
  • [1] Efficient Graph Kernels for Textual Entailment Recognition
    Zanzotto, Fabio Massimo
    Dell'Arciprete, Lorenzo
    Moschitti, Alessandro
    FUNDAMENTA INFORMATICAE, 2011, 107 (2-3) : 199 - 222
  • [2] Deep Learning for Textual Entailment Recognition
    Lyu, Chen
    Lu, Yanan
    Ji, Donghong
    Chen, Bo
    2015 IEEE 27TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2015), 2015, : 154 - 161
  • [3] A STUDY OF TEXTUAL ENTAILMENT
    Rus, Vasile
    McCarthy, Philip M.
    McNamara, Danielle S.
    Graesser, Arthur C.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (04) : 659 - 685
  • [4] Translators in Textual Entailment
    Javier Castillo, Julio
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2010, 79 : 193 - 196
  • [5] Learning textual entailment on a distance feature space
    Pazienza, Maria Teresa
    Pennacchiotti, Marco
    Zanzotto, Fabio Massimo
    MACHINE LEARNING CHALLENGES: EVALUATING PREDICTIVE UNCERTAINTY VISUAL OBJECT CLASSIFICATION AND RECOGNIZING TEXTUAL ENTAILMENT, 2006, 3944 : 240 - 260
  • [6] Coherence and transitivity of subtyping as entailment
    Longo, G
    Milsted, K
    Soloviev, S
    JOURNAL OF LOGIC AND COMPUTATION, 2000, 10 (04) : 493 - 526
  • [7] Textual Entailment by Generality
    Pais, Sebastiao
    Dias, Gael
    Wegrzyn-Wolska, Katarzyna
    Mahl, Robert
    Jouvelot, Pierre
    COMPUTATIONAL LINGUISTICS AND RELATED FIELDS, 2011, 27 : 258 - 266
  • [8] Statistical Relational Learning to Recognise Textual Entailment
    Rios, Miguel
    Specia, Lucia
    Gelbukh, Alexander
    Mitkov, Ruslan
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2014, PT I, 2014, 8403 : 330 - 339
  • [9] A study on textual entailment
    Rus, V
    Graesser, A
    McCarthy, PM
    Lin, KI
    ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 326 - 333
  • [10] Defining Textual Entailment
    Korman, Daniel Z.
    Mack, Eric
    Jett, Jacob
    Renear, Allen H.
    JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 2018, 69 (06) : 763 - 772