Evaluating Descriptors performances for object tracking on natural video data

被引:0
|
作者
Mikram, Mounia [1 ]
Megret, Remi [1 ]
Berthoumieu, Yannick [1 ]
机构
[1] Univ Bordeaux 1, CNRS, Lab IMS,Dept LAPS,UMR 5218, ENSEIRB ENSCPB, F-33405 Talence, France
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a new framework is presented for the quantitative evaluation of the performance of appearance models composed of an object descriptor and a similarity measure in the context of object tracking. The evaluation is based on natural videos, and takes advantage of existing ground-truths from object tracking benchmarks. The proposed metrics evaluate the ability of an appearance model to discriminate an object from the clutter. This allows comparing models which may use diverse kinds of descriptors or similarity measures in a principled manner. The performances measures can be global, but time-oriented performance evaluation is also presented. The insights that the proposed framework can bring on appearance models properties with respect to tracking are illustrated on natural video data.
引用
收藏
页码:352 / 363
页数:12
相关论文
共 50 条
  • [1] Hybrid framework for evaluating video object tracking algorithms
    Carvalho, P.
    Cardoso, J. S.
    Corte-Real, L.
    ELECTRONICS LETTERS, 2010, 46 (06) : 411 - 412
  • [2] Discriminative descriptors for object tracking
    Ruan, Yang
    Wei, Zhenzhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 35 : 146 - 154
  • [3] Methods to Simplify Object Tracking in Video Data
    Orban, Chris M.
    Zimmerman, Scott
    Kuip, Jessica T.
    Boughton, Jennifer
    Perrico, Zachary
    Rapp, Brianna
    Teeling-Smith, Richelle
    PHYSICS TEACHER, 2023, 61 (07): : 576 - 579
  • [4] A data set for evaluating the performance of multi-class multi-object video tracking
    Chakraborty, Avishek
    Stamatescu, Victor
    Wong, Sebastien C.
    Wigley, Grant
    Kearney, David
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [5] Video-based descriptors for object recognition
    Lee, Taehee
    Soatto, Stefano
    IMAGE AND VISION COMPUTING, 2011, 29 (10) : 639 - 652
  • [6] Evaluating Color Descriptors for Object and Scene Recognition
    van de Sande, Koen E. A.
    Gevers, Theo
    Snoek, Cees G. M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1582 - 1596
  • [7] A Setup for Evaluating Detectors and Descriptors for Visual Tracking
    Gauglitz, Steffen
    Hoellerer, Tobias
    Krahwinkler, Petra
    Rossmann, Juergen
    2009 8TH IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY - SCIENCE AND TECHNOLOGY, 2009, : 185 - +
  • [8] A survey of video object tracking
    Li, Meng
    Cai, Zemin
    Wei, Chuliang
    Yuan, Ye
    International Journal of Control and Automation, 2015, 8 (09): : 303 - 312
  • [9] Object tracking for video annotation
    Zhang, SQ
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 : 804 - 814
  • [10] Moving object tracking in video
    Wang, Y
    Doherty, JF
    Van Dyck, RE
    29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 95 - 101