Experimental investigation of the thermal characteristics of single-turn pulsating heat pipes with an extra branch

被引:35
|
作者
Sedighi, E. [1 ]
Amarloo, A. [1 ]
Shafii, M. B. [1 ]
机构
[1] Sharif Univ Technol, Dept Mech Engn, POB 11365-9567, Tehran, Iran
关键词
Pulsating heat-pipe; Circulatory flow; Unidirectional flow; Additional bubble-pump; Additional branch; PERFORMANCE; DESIGN;
D O I
10.1016/j.ijthermalsci.2018.08.024
中图分类号
O414.1 [热力学];
学科分类号
摘要
In addition to some approaches such as changing the working fluid or number of turns in a pulsating heat pipe (PHP), geometrical changes are also appealing for enhancing the thermal performance of this type of heat pipes. The main idea of this investigation is to increase heat transfer rate by increasing flow circulation of working fluid. By placing an additional branch in the evaporator section, a secondary bubble pump was created which improved the circulation of fluid inside PHP. In order to investigate the impact of this additional branch, two similar one-turn copper heat pipes were fabricated. One of them was the conventional PHP and the other had an additional branch and is named additional branch PHP (AB-PHP). Thermal performances of these two types of heat pipes were investigated at different filling ratios (40, 50, 60, and 70%), inclination angles (0, 30, 60, and 90), and heat inputs (from 5 to 150 Watts). Results showed that the thermal performance of the AB-PHP is considerably (up to 51%) better than the conventional PHP in the vertical orientation using filling ratios of 40% and 70%. Furthermore, comparing the performance of these two systems at the optimum filling ratio (60%) and different inclination angles indicated the better performance of AB-PHP in non-vertical positions including horizontal position. To better understand the effect of the additional branch in the AB-PHP, a Pyrex heat pipe similar to the copper type was fabricated and the flow circulation was visually analyzed.
引用
收藏
页码:258 / 268
页数:11
相关论文
共 50 条
  • [1] An Experimental Investigation of Micro Pulsating Heat Pipes
    Yang, Kai-Shing
    Cheng, Yu-Chi
    Jeng, Ming-Shan
    Chien, Kuo-Hsiang
    Shyu, Jin-Cherng
    MICROMACHINES, 2014, 5 (02): : 385 - 395
  • [2] An Experimental Investigation of Micro Pulsating Heat Pipes
    Yang, K. -S.
    Cheng, Y. -C.
    Jeng, M. -S.
    Chien, K-H.
    Shyu, J. -C.
    2013 8TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (IEEE NEMS 2013), 2013, : 869 - 872
  • [3] Experimental investigation and a new predictive tool for thermal performance of pulsating heat pipes
    Burak Markal
    Ramazan Varol
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45
  • [5] Experimental Investigation of Pulsating Heat Pipes and a Proposed Correlation
    Shafii, M. B.
    Arabnejad, S.
    Saboohi, Y.
    Jamshidi, H.
    HEAT TRANSFER ENGINEERING, 2010, 31 (10) : 854 - 861
  • [6] Numerical and experimental investigation of flat-plate pulsating heat pipes with extra branches in the evaporator section
    Sedighi, Erfan
    Amarloo, Ali
    Shafii, Behshad
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 431 - 441
  • [7] A Comparative experimental Investigation into the heat transfer characteristics of pulsating heat pipes with symmetric versus asymmetric structures
    Liu, Dong
    Liu, Jianhong
    Yang, Kai
    Zheng, Chaofan
    Shang, Fumin
    Ma, Shunfang
    Xu, Haoran
    Cao, Xin
    APPLIED THERMAL ENGINEERING, 2025, 266
  • [8] Entropy generation analysis in a single-turn pulsating heat pipe considering phase change modeling
    Mobadersani, Farrokh
    Hesari, Araz Rezavand
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (03):
  • [9] Entropy generation analysis in a single-turn pulsating heat pipe considering phase change modeling
    Farrokh Mobadersani
    Araz Rezavand Hesari
    The European Physical Journal Plus, 136
  • [10] Scaling analysis and experimental investigation of pulsating loop heat pipes
    Mahapatra, Bishnu N.
    Das, P. K.
    Sahoo, Sudhansu S.
    APPLIED THERMAL ENGINEERING, 2016, 108 : 358 - 367