Spatial Analyticity of Solutions to Korteweg-de Vries Type Equations

被引:2
|
作者
Bouhali, Keltoum [1 ]
Moumen, Abdelkader [2 ]
Tajer, Khadiga W. [3 ]
Taha, Khdija O. [3 ]
Altayeb, Yousif [3 ]
机构
[1] Univ 20 Aout 1955, Dept Math, Fac Sci, Skikda 21000, Algeria
[2] Univ Hail, Dept Math, Fac Sci, Hail 55425, Saudi Arabia
[3] Qassim Univ, Dept Math, Coll Sci & Arts, Ar Rass 51921, Saudi Arabia
关键词
KdV equation; radius of spatial analyticity; approximate conservation law; WELL-POSEDNESS; LOWER BOUNDS; RADIUS; WAVES;
D O I
10.3390/mca26040075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Korteweg-de Vries equation (KdV) is a mathematical model of waves on shallow water surfaces. It is given as third-order nonlinear partial differential equation and plays a very important role in the theory of nonlinear waves. It was obtained by Boussinesq in 1877, and a detailed analysis was performed by Korteweg and de Vries in 1895. In this article, by using multi-linear estimates in Bourgain type spaces, we prove the local well-posedness of the initial value problem associated with the Korteweg-de Vries equations. The solution is established online for analytic initial data w0 that can be extended as holomorphic functions in a strip around the x-axis. A procedure for constructing a global solution is proposed, which improves upon earlier results.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32
  • [2] HIERARCHIES OF KORTEWEG-DE VRIES TYPE EQUATIONS
    SVININ, AK
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 814 - 827
  • [3] Soliton solutions and quasiperiodic solutions of modified Korteweg-de Vries type equations
    Geng, Xianguo
    Xue, Bo
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [4] Oscillatory Solutions for Lattice Korteweg-de Vries-Type Equations
    Feng, Wei
    Zhao, Song-Lin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02): : 91 - 98
  • [5] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [6] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [7] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [8] Periodic solutions of Wick-type stochastic Korteweg-de Vries equations
    Choi, Jin Hyuk
    Lee, Daeho
    Kim, Hyunsoo
    PRAMANA-JOURNAL OF PHYSICS, 2016, 87 (04):
  • [9] Rational Solutions for Two Nonautonomous Lattice Korteweg-de Vries Type Equations
    Ma, Mingyu
    Zhao, Songlin
    Feng, Wei
    SYMMETRY-BASEL, 2024, 16 (08):
  • [10] Numerical Solutions of Korteweg-de Vries and Korteweg-de Vries-Burger's Equations in a Bernstein Polynomial Basis
    Ahmed, H. M.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)