The potential energy curves for the lowest (3)Sigma(-), (3)Pi, and (5)Sigma(-) states of the KN molecule have been calculated by the multireference singles and doubles configuration interaction method, including Davidson's corrections for quadruple excitations [MRCI(+Q)]. It is shown that the former two are bound, while the last one is repulsive. The electronic ground state of KN is predicted as (3)Sigma(-) state, although the term energy of the (3)Pi state is very small, 177.3 cm(-1). The binding energy for the (3)Sigma(-) state is evaluated as 0.838 eV, the rotational constant B-0 as 0.250 63 cm(-1), and harmonic frequency as 324.4 cm(-1). The spin-orbit coupling effects between the (3)Sigma(-) and (3)Pi states of KN are evaluated and discussed. The same MRCI(+Q) computational procedures are applied to the isovalent LiN, KC, KO, and KCl to confirm the accuracy of present calculations. Theoretical spectroscopic constants presented here will inspire experimental studies of KN. (c) 2007 American Institute of Physics.