New linear prediction model for lossless compression of hyperspectral images

被引:0
|
作者
Kubasova, O [1 ]
Toivanen, P [1 ]
机构
[1] Lappeenranta Univ Technol, Dept Informat Technol, Lappeenranta, Finland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel adaptive linear prediction model for lossless compression of hyperspectral images has been developed. In this paper the model concepts are discussed. New prediction technique is particularly useful for lossless compression of very high spectral resolution images. The adaptive prediction model is an extended unification of 2- and 4-neighbour pixel context linear prediction schemes. It provides new insight into how to predict every band of the image by maximizing compression ratio. The possibility to recognize the best prediction scheme and then to apply it to particular image band has increases compression ratio of multispectral images significantly. The model has been embedded in a lossless compression algorithm at the prediction phase. The algorithm has been tested on real hyperspectral images. Moreover, the same algorithm has been run with two different prediction techniques and without prediction. The results obtained show advantages of the newly proposed prediction model.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 50 条
  • [1] Linear prediction in lossless compression of hyperspectral images
    Mielikainen, J
    Toivanen, P
    Kaarna, A
    OPTICAL ENGINEERING, 2003, 42 (04) : 1013 - 1017
  • [2] Lossless Compression of Hyperspectral Images Using Clustered Linear Prediction With Adaptive Prediction Length
    Mielikainen, Jarno
    Huang, Bormin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) : 1118 - 1121
  • [3] Clustered linear prediction for lossless compression of hyperspectral images using adaptive prediction length
    Mielikainen, Jarno
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VI, 2010, 7810
  • [4] Lossless hyperspectral image compression via linear prediction
    Mielikainen, J
    Kaarna, A
    Toivanen, P
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 600 - 608
  • [5] Implementation of linear prediction models for lossless compression of hyperspectral images in novel parallel environments
    Mielikäinen, J
    Toivanen, P
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 975 - 982
  • [6] Parallel implementation of linear prediction model for lossless compression of hyperspectral airborne visible infrared imaging spectrometer images
    Mielikainen, J
    Toivanen, P
    JOURNAL OF ELECTRONIC IMAGING, 2005, 14 (01) : 1 - 7
  • [7] Lossless compression of hyperspectral images using hybrid context prediction
    Liang, Yuan
    Li, Jianping
    Guo, Ke
    OPTICS EXPRESS, 2012, 20 (07): : 8199 - 8206
  • [8] Lossless Compression of Hyperspectral Images Based on the Prediction Error Block
    Li, Yongjun
    Li, Yunsong
    Song, Juan
    Liu, Weijia
    Li, Jiaojiao
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXII, 2016, 9840
  • [9] Edge-based prediction for lossless compression of hyperspectral images
    Jain, Sushil K.
    Adjeroh, Donald A.
    DCC 2007: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2007, : 153 - +
  • [10] Multiband and Lossless Compression of Hyperspectral Images
    Pizzolante, Raffaele
    Carpentieri, Bruno
    ALGORITHMS, 2016, 9 (01)