y Two-photon quantum interference and entanglement at 2.1 μm

被引:39
|
作者
Prabhakar, Shashi [1 ]
Shields, Taylor [1 ]
Dada, Adetunmise C. [1 ]
Ebrahim, Mehdi [1 ]
Taylor, Gregor G. [1 ]
Morozov, Dmitry [1 ]
Erotokritou, Kleanthis [1 ]
Miki, Shigehito [2 ,3 ]
Yabuno, Masahiro [2 ]
Terai, Hirotaka [2 ]
Gawith, Corin [4 ,5 ]
Kues, Michael [6 ,7 ]
Caspani, Lucia [8 ]
Hadfield, Robert H. [1 ]
Clerici, Matteo [1 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[2] Natl Inst Informat & Commun Technol, Adv ICT Res Inst, Nishi Ku, 588-2 Iwaoka, Kobe, Hyogo 6512492, Japan
[3] Kobe Univ, Grad Sch Engn, Fac Engn, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6570013, Japan
[4] Covesion Ltd, Premier Ctr, Unit A7,Premier Way, Romsey SO51 9DG, Hants, England
[5] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[6] Leibniz Univ Hannover, Hannover Ctr Opt Technol HOT, Hannover, Germany
[7] Cluster Excellence PhoenixD, Photon Opt & Engn Innovat Disciplines, Hannover, Germany
[8] Univ Strathclyde, Inst Photon, Dept Phys, Glasgow G1 1RD, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 英国科研创新办公室; 欧洲研究理事会; “创新英国”项目;
关键词
SINGLE-PHOTON DETECTORS; PAIRS; TIME;
D O I
10.1126/sciadv.aay5195
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum-enhanced optical systems operating within the 2- to 2.5-mu m spectral region have the potential to revolutionize emerging applications in communications, sensing, and metrology. However, to date, sources of entangled photons have been realized mainly in the near-infrared 700- to 1550- nm spectral window. Here, using custom-designed lithium niobate crystals for spontaneous parametric down-conversion and tailored superconducting nanowire single-photon detectors, we demonstrate two-photon interference and polarization-entangled photon pairs at 2090 nm. These results open the 2- to 2.5-mu m mid-infrared window for the development of optical quantum technologies such as quantum key distribution in next-generation mid-infrared fiber communication systems and future Earth-to-satellite communications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Near-Maximal Two-Photon Entanglement for Optical Quantum Communication at 2.1 μm
    Dada, Adetunmise C.
    Gawith, Corin
    Lavery, Martin
    Hadfield, Robert H.
    Faccio, Daniele
    Clerici, Matteo
    Kaniewski, Kdrzej
    PHYSICAL REVIEW APPLIED, 2021, 16 (05):
  • [2] Manipulation of Two-Photon Interference by Entanglement
    Sharapova, P. R.
    Luo, K. H.
    Herrmann, H.
    Reichelt, M.
    Silberhorn, C.
    Meier, T.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [3] Two-photon anti-coalescence interference: The signature of two-photon entanglement
    Wang, KG
    Zhu, SY
    EUROPHYSICS LETTERS, 2003, 64 (01): : 22 - 28
  • [4] Two-photon quantum interference in the 1.5 μm telecommunication band
    Cho, Seok-Beom
    Noh, Tae-Gon
    OPTICS EXPRESS, 2007, 15 (12): : 7591 - 7595
  • [5] Two-photon interference and entanglement control via reconfigurable quantum frequency processor
    Lu, Hsuan-Hao
    Lukens, Joseph M.
    Peters, Nicholas A.
    Williams, Brian P.
    Weiner, Andrew M.
    Lougovski, Pavel
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [6] Quantum entanglement and the two-photon Stokes parameters
    Abouraddy, AF
    Sergienko, AV
    Saleh, BEA
    Teich, MC
    OPTICS COMMUNICATIONS, 2002, 201 (1-3) : 93 - 98
  • [7] Modified two-photon interference achieved by the manipulation of entanglement
    Sharapova, P. R.
    Luo, K. H.
    Herrmann, H.
    Reichelt, M.
    Silberhorn, C.
    Meier, T.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [8] Two-photon quantum interference in a Michelson interferometer
    Odate, S
    Wang, HB
    Kobayashi, T
    PHYSICAL REVIEW A, 2005, 72 (06):
  • [9] Suppression of two-photon absorption by quantum interference
    Yan, M
    Rickey, EG
    Zhu, YF
    PHYSICAL REVIEW A, 2001, 64 (04): : 4
  • [10] Quantum fingerprinting using two-photon interference
    Jachura, Michal
    Lipka, Michal
    Jarzyna, Marcin
    Banaszek, Konrad
    OPTICS EXPRESS, 2017, 25 (22): : 27475 - 27487