Lyapunov graph for two-parameters map: Application to the circle map

被引:15
|
作者
De Figueiredo, JCB [1 ]
Malta, CP [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
关键词
D O I
10.1142/S0218127498000176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a Lyapunov graph the Lyapunov exponent, lambda, is represented by a color in the parameter space. The color shade varies from black to white as lambda goes from -infinity to 0. Some of the main aspects of the complex dynamics of the circle map (theta n+1 = theta(n)+Omega+(1/2 pi)K sin(2 pi theta(n))(mod 1)), can be obtained by analyzing its Lyapunov graph. For K > 1 the map develops one maximum and one minimum and may exhibit bistability that corresponds to the intersection of topological structures (stability arms) in the Lyapunov graph. In the bistability region, there is a strong sensitivity to the initial condition. Using the fact that each of the coexisting stable solution is associated to one of the extrema of the map, we construct a function that allows to obtain the boundary separating the set of initial conditions converging to one stable solution, from the set of initial conditions converging to the other coexisting stable solution.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 50 条
  • [1] LYAPUNOV EXPONENTS OF THE CIRCLE MAP IN HUMAN HEARTS
    HE, YQ
    CHI, RD
    HE, NW
    PHYSICS LETTERS A, 1992, 170 (01) : 29 - 32
  • [2] Circle Map
    Lister, Rodney
    TEMPO, 2013, 264 : 74 - 75
  • [3] CIRCLE MAP
    Hiller, Egbert
    NEUE ZEITSCHRIFT FUR MUSIK, 2020, (02): : 59 - 59
  • [4] The folded map on an identification graph and its application
    Abu-Saleem, Mohammed
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [5] Linearly recurrent circle map subshifts and an application to Schrodinger operators
    Adamczewski, B
    Damanik, D
    ANNALES HENRI POINCARE, 2002, 3 (05): : 1019 - 1047
  • [6] Some scaling behaviors in a circle map with two inflection points
    Tseng, HC
    Tai, MF
    Chen, HJ
    Li, PC
    Chou, CH
    Hu, CK
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (26): : 3149 - 3158
  • [7] CIRCLE-MAP SCALING IN A TWO-DIMENSIONAL SETTING
    WANG, XW
    MAINIERI, R
    LOWENSTEIN, JH
    PHYSICAL REVIEW A, 1989, 40 (09): : 5382 - 5389
  • [8] Basin structure in the two-dimensional dissipative circle map
    Hayase, Y
    Fukano, S
    Nakanishi, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (08) : 1943 - 1947
  • [9] KNEADING PLANE OF THE CIRCLE MAP
    ZHENG, WM
    CHAOS SOLITONS & FRACTALS, 1994, 4 (07) : 1221 - 1233
  • [10] CORRECTIONS TO SCALING IN THE CIRCLE MAP
    TZENG, WJ
    YU, TC
    HU, B
    HU, CK
    PHYSICS LETTERS A, 1991, 153 (2-3) : 117 - 119