On the Strong Solutions and the Structural Stability of the g-Benard Problem

被引:2
|
作者
Ozluk, Muharrem [1 ,2 ]
Kaya, Meryem [2 ]
机构
[1] Batman Univ, Dept Math, TR-72060 Batman, Turkey
[2] Gazi Univ, Dept Math, Ankara, Turkey
关键词
Benard problem; strong solutions; structural stability; NAVIER-STOKES EQUATIONS; THIN DOMAINS; INCOMPRESSIBLE FLUIDS; BOUNDARY; EXISTENCE;
D O I
10.1080/01630563.2017.1350975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a type of modified Boussinesq equations which is called g-Benard problem. We show the existence and uniqueness of strong solutions of the problem in two dimensions, and then, we investigate the continuous dependence of the solutions on the viscosity parameter.
引用
收藏
页码:383 / 397
页数:15
相关论文
共 50 条
  • [1] On the weak solutions and determining modes of the g-Benard problem
    Ozluk, Muharrem
    Kaya, Meryem
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1453 - 1466
  • [2] Weak solutions to the time-fractional g-Benard equations
    Aayadi, Khadija
    Akhlil, Khalid
    Ben Aadi, Sultana
    Mahdioui, Hicham
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [3] Structural Stability For The Benard Problem With Voight Regularization
    Kaya, Meryem
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2018, 31 (03): : 890 - 896
  • [4] EXPONENTIAL STABILITY OF THE SOLUTIONS TO THE BOLTZMANN EQUATION FOR THE BENARD PROBLEM
    Arkeryd, Leif
    Esposito, Raffaele
    Marra, Rossana
    Nouri, Anne
    KINETIC AND RELATED MODELS, 2012, 5 (04) : 673 - 695
  • [5] On the stability of the rotating benard problem
    Mulone, G.
    Rionero, S.
    Bulletin of the Technical University of Istanbul, 1994, 47 (1-2):
  • [6] Global Stability of Large Solutions to the 3D Magnetic Benard Problem
    Qin, Xulong
    Qiu, Hua
    Yao, Zheng-an
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (02) : 588 - 610
  • [7] Existence and nonlinear stability of convective solutions for almost compressible fluids in Benard problem
    De Martino, Antonino
    Passerini, Arianna
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (11)
  • [8] Nonlinear stability of the viscoelastic Benard problem
    Jiang, Fei
    Liu, Mengmeng
    NONLINEARITY, 2020, 33 (04) : 1677 - 1704
  • [9] Loss of stability in the magnetic Benard problem
    Scarpellini, B
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02): : 157 - 185
  • [10] Uniform global strong solutions of the 2D magnetic Benard problem in a bounded domain
    Fan, Jishan
    Liu, Dan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 166 - 172