Hybridization of electromagnetic numerical methods through the G-matrix algorithm
被引:18
|
作者:
Hugonin, J. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, FranceUniv Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, France
Hugonin, J. P.
[1
]
Besbes, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, FranceUniv Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, France
Besbes, M.
[1
]
Lalanne, P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, FranceUniv Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, France
Lalanne, P.
[1
]
机构:
[1] Univ Paris Sud, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, France
For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we propose an extension of the classical S-matrix formalism to numerical situations, which requires handling different mathematical representations of the electromagnetic fields. As shown with a three-dimensional example, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of numerical accuracy and efficiency. (C) 2008 Optical Society of America.
机构:
Univ Virginia, Mt Lake Biol Stn, Charlottesville, VA 22904 USA
Univ Virginia, Dept Biol, Charlottesville, VA 22904 USAUniv Virginia, Mt Lake Biol Stn, Charlottesville, VA 22904 USA
Wood, Corlett W.
Brodie, Edmund D., III
论文数: 0引用数: 0
h-index: 0
机构:
Univ Virginia, Mt Lake Biol Stn, Charlottesville, VA 22904 USA
Univ Virginia, Dept Biol, Charlottesville, VA 22904 USAUniv Virginia, Mt Lake Biol Stn, Charlottesville, VA 22904 USA