Harnessing Performance Variability: A HPC-oriented Application Scenario

被引:0
|
作者
Massari, Giuseppe [1 ]
Libutti, Simone [1 ]
Portero, Antoni [2 ]
Vavrik, Radim [2 ]
Kuchar, Stepan [2 ]
Vondrak, Vit [2 ]
Borghese, Luca [1 ]
Fornaciari, William [1 ]
机构
[1] Politecn Milan, DEIB, Milan, Italy
[2] VSB Tech Univ Ostrava, Natl Supercomp Ctr IT4Innovat, Ostrava, Czech Republic
关键词
D O I
10.1109/DSD.2015.87
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The technology scaling towards the 10nm of the silicon manufacturing, is going to introduce variability challenges, mainly due to the growing susceptibility to thermal hot-spots and time-dependent variations (aging) in the silicon chip. The consequences are two-fold: a) unpredictable performance; b) unreliable computing resources. The goal of the HARPA project is to enable next-generation embedded and high-performance heterogeneous many-core processors to effectively address this issues, through a cross-layer approach, involving several component of the system stack. Each component acts at different levels and time granularity. This paper focus on one of the components of the HARPA stack, the HARPA-OS, showing early results of a first integration step of the HARPA approach in a real High-Performance Computing (HPC) application scenario.
引用
收藏
页码:111 / 116
页数:6
相关论文
共 50 条
  • [1] HPC-oriented Toolchain For Hardware Simulators
    Serres, Olivier
    Kayraklioglu, Engin
    El-Ghazawi, Tarek
    2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 653 - 654
  • [2] HPC-Oriented Power Evaluation Method
    Zhang, Feng
    Chen, Liang
    2015 44TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOPS, 2015, : 203 - 212
  • [3] Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications
    Gianni D'Angelo
    Salvatore Rampone
    BMC Bioinformatics, 15
  • [4] Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications
    D'Angelo, Gianni
    Rampone, Salvatore
    BMC BIOINFORMATICS, 2014, 15
  • [5] HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction
    Mozaffari, Amirpasha
    Langguth, Michael
    Gong, Bing
    Ahring, Jessica
    Campos, Adrian Rojas
    Nieters, Pascal
    Escobar, Otoniel Jose Campos
    Wittenbrink, Martin
    Baumann, Peter
    Schultz, Martin G.
    DATA INTELLIGENCE, 2022, 4 (02) : 271 - 285
  • [6] Exploring Inter-tile Connectivity for HPC-oriented CGRA with Lower Resource Usage
    Adhi, Boma
    Cortes, Carlos
    Ueno, Tomohiro
    Tan, Yiyu
    Kojima, Takuya
    Podobas, Artur
    Sano, Kentaro
    2022 21ST INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2022), 2022, : 252 - 255
  • [7] HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction附视频
    Amirpasha Mozaffari
    Michael Langguth
    Bing Gong
    Jessica Ahring
    Adrian Rojas Campos
    Pascal Nieters
    Otoniel Jos Campos Escobar
    Martin Wittenbrink
    Peter Baumann
    Martin GSchultz
    Data Intelligence, 2022, (02) : 271 - 285
  • [8] Using an Adaptive and time predictable Runtime System for Power-Aware HPC-oriented applications
    Portero, A.
    Sevcik, J.
    Golasowski, M.
    Vavrik, R.
    Libutti, S.
    Massari, G.
    Catthoor, F.
    Fornaciari, W.
    Vondrak, V.
    2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,
  • [9] Exploration of Trade-offs Between General-Purpose and Specialized Processing Elements in HPC-Oriented CGRA
    Del Sozzo, Emanuele
    Wang, Xinyuan
    Adhi, Boma
    Cortes, Carlos
    Anderson, Jason
    Sano, Kentaro
    PROCEEDINGS 2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS 2024, 2024, : 668 - 680
  • [10] Exascale potholes for HPC: Execution performance and variability analysis of the flagship application code HemeLB
    Wylie, Brian J. N.
    PROCEEDINGS OF 2020 IEEE/ACM INTERNATIONAL WORKSHOP ON HPC USER SUPPORT TOOLS (HUST) AND THE WORKSHOP ON PROGRAMMING AND PERFORMANCE VISUALIZATION TOOLS (PROTOOLS), 2020, : 59 - 70