Co-hydrothermal carbonization of sewage sludge and banana stalk: Fuel properties of hydrochar and environmental risks of heavy metals

被引:45
|
作者
Zhang, Chaoyue [1 ,2 ]
Zheng, Chupeng [1 ,2 ]
Ma, Xiaoqian [1 ,2 ]
Zhou, Yi [1 ,2 ]
Wu, Junnan [1 ,2 ]
机构
[1] South China Univ Technol, Sch Elect Power, Guangdong Prov Key Lab Efficient & Clean Energy U, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Sch Elect Power, 381 Wushan Rd, Guangzhou 510640, Peoples R China
来源
关键词
Co-hydrothermal carbonization; Sewage sludge; Banana stalk; Heavy metals; Mathematical modeling; TEMPERATURE; MIGRATION; BEHAVIOR; BIOMASS; FATE; IMMOBILIZATION; LIQUEFACTION; COMBUSTION; DISPOSAL; WASTE;
D O I
10.1016/j.jece.2021.106051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigated co-hydrothermal carbonization (co-HTC) of sewage sludge (SS) and banana stalk (BS), mainly focusing on the variations in hydrochar fuel properties and migration behavior of heavy metals (HMs) responding to different reaction temperature and SS/BS mixing ratios. This work established reliable mathematical models to integrate discrete experimental points and further obtain continuous response surfaces. Moreover, coupling with the two-way analysis of variance, the relationship between hydrochar properties and process parameters could be intuitively described. Statistical analysis (P-value) revealed that the mixing ratio was the most dominant factor affecting various hydrochar characteristics. The synergistic effects, mainly induced by Maillard and Mannich reactions, would contribute to superior hydrochar yield, C and N contents, higher heating value, and energy yield compared with their calculated values. Thermogravimetric analysis indicated that co-HTC with BS was a viable avenue to improve hydrochar combustibility index S to an acceptable level, with figures elevating from 1.34-1.58 to 27.71 (10(-7) x min(-2) x celcius(-3)). Additionally, co-HTC of SS and BS could generate efficient synergistic HMs immobilization effects, promoting the transformation of HMs from direct/potential eco-toxic fractions to non-toxic fraction, thereby largely reducing ecological risks of hydrochar. These findings provided referential information for harmless and resource utilization of SS and BS.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Co-hydrothermal carbonization of sewage sludge and bamboo: hydrochar properties and risk assessment of heavy metals
    Lu, Xiaoluan
    Ma, Xiaoqian
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (12) : 12747 - 12760
  • [2] Co-hydrothermal carbonization of sewage sludge and polyvinyl chloride: Hydrochar properties and fate of chlorine and heavy metals
    Lu, Xiaoluan
    Ma, Xiaoqian
    Qin, Zhen
    Chen, Xinfei
    Chen, Limei
    Tian, Yunlong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (05):
  • [3] Co-hydrothermal carbonization of sewage sludge and swine manure: Hydrochar properties and heavy metal chemical speciation
    Lu, Xiaoluan
    Ma, Xiaoqian
    Qin, Zhen
    Chen, Xinfei
    Yue, Wenchang
    FUEL, 2022, 330
  • [4] Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass
    Djandja, Oraleou Sangue
    Kang, Shimin
    Huang, Zizhi
    Li, Junqiao
    Feng, Jiaqi
    Tan, Zaiming
    Salami, Adekunle Akim
    Lougou, Bachirou Guene
    ENERGY, 2023, 271
  • [5] Stabilization of heavy metals in sewage sludge by co-hydrothermal carbonization with biomass bottom ash
    Wen, Haifeng
    Zhao, Min
    Gao, Jingjing
    Zhang, He
    Lu, Junyang
    JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, 2024, 26 (03) : 1609 - 1621
  • [6] Stabilization of heavy metals in sewage sludge by co-hydrothermal carbonization with biomass bottom ash
    Haifeng Wen
    Min Zhao
    Jingjing Gao
    He Zhang
    Junyang Lu
    Journal of Material Cycles and Waste Management, 2024, 26 : 1609 - 1621
  • [7] From sewage sludge and lignocellulose to hydrochar by co-hydrothermal carbonization: Mechanism and combustion characteristics
    Cui, Da
    Zhang, Bowen
    Wu, Shuang
    Xu, Xiangming
    Liu, Bin
    Wang, Qing
    Zhang, Xuehua
    Zhang, Jinghui
    ENERGY, 2024, 305
  • [8] Investigation of aqueous phase recirculation on co-hydrothermal carbonization of sewage sludge and lignite: Hydrochar properties and heavy metal chemical speciation
    Lu, Xiaoluan
    Ma, Xiaoqian
    Qin, Zhen
    Chen, Xinfei
    Qi, Xin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (01):
  • [9] Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars
    Lu, Xiaoluan
    Ma, Xiaoqian
    Chen, Xinfei
    ENERGY, 2021, 221
  • [10] Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust
    Ma, Jing
    Chen, Mengjun
    Yang, Tianxue
    Liu, Zhengang
    Jiao, Wentao
    Li, Dong
    Gai, Chao
    ENERGY, 2019, 173 : 732 - 739